A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{2}}{2}$ |
分析 求出P,Q的直角坐標(biāo),代入距離公式即可得出答案.
解答 解:P點(diǎn)直角坐標(biāo)為($\sqrt{2}$,$\sqrt{2}$,1),Q點(diǎn)的直角坐標(biāo)為($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),
∴|PQ|=$\sqrt{(\sqrt{2}-\frac{\sqrt{2}}{2})^{2}+(\sqrt{2}-\frac{\sqrt{2}}{2})^{2}+{1}^{2}}$=$\sqrt{2}$.
故選B.
點(diǎn)評(píng) 本題考查了球坐標(biāo),柱坐標(biāo)與直角坐標(biāo)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 總計(jì) | |
男 | 40 | 80 | 120 |
女 | 40 | 140 | 180 |
總計(jì) | 80 | 220 | 300 |
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
A. | 有95%以上把握認(rèn)為“性別與喜歡數(shù)學(xué)課有關(guān)” | |
B. | 有95%以上把握認(rèn)為“性別與喜歡數(shù)學(xué)課無關(guān)” | |
C. | 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“性別與喜歡數(shù)學(xué)課有關(guān)” | |
D. | 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“性別與喜歡數(shù)學(xué)課無關(guān)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\frac{\sqrt{5}}{2}$) | B. | (1,$\frac{\sqrt{5}}{2}$] | C. | (1,$\frac{5}{4}$) | D. | (1,$\frac{5}{4}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{9\sqrt{3}}}{2}$ | B. | $16+\frac{{9\sqrt{3}}}{2}$ | C. | $18+\frac{{9\sqrt{3}}}{2}$ | D. | $\frac{{9\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3\sqrt{2}}}{2}$ | B. | $\frac{{3\sqrt{15}}}{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $-\frac{{3\sqrt{15}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9種 | B. | 10種 | C. | 12種 | D. | 24種 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com