分析 運用函數(shù)的奇偶性的定義,可得f(x)為奇函數(shù),即可得到f(x)的最值之和.
解答 解:依題意,函數(shù)f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$+4loga$\frac{1+x}{1-x}$,其中-1<x<1,
由f(-x)=$\frac{{a}^{-x}-1}{{a}^{-x}+1}$+4loga$\frac{1-x}{1+x}$=$\frac{1-{a}^{x}}{1+{a}^{x}}$-4loga$\frac{1+x}{1-x}$=-f(x),
即f(x)為奇函數(shù),
故f(x)函數(shù)的圖象關于原點對稱,
故函數(shù)f(x)的最大值與最小值之和為0.
故答案為:0.
點評 本題考查函數(shù)的最值的求法,注意運用奇偶性,考查運算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15種 | B. | 20種 | C. | 48種 | D. | 60種 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{624}{625}$ | B. | $\frac{96}{625}$ | C. | $\frac{16}{625}$ | D. | $\frac{4}{625}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com