2.側棱長為2的正三棱柱,若其底面周長為9,則該正三棱柱的表面積是( 。
A.$\frac{{9\sqrt{3}}}{2}$B.$16+\frac{{9\sqrt{3}}}{2}$C.$18+\frac{{9\sqrt{3}}}{2}$D.$\frac{{9\sqrt{3}}}{4}$

分析 直接利用側面積加上底面面積求解即可.

解答 解:側棱長為2的正三棱柱,若其底面周長為9,
該正三棱柱的表面積:9×2+2×$\frac{\sqrt{3}}{4}×{3}^{2}$=18+$\frac{9\sqrt{3}}{2}$.
故選:C.

點評 本題考查圓柱的表面積的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)g(x)=x2+ln(x+a),其中a為常數(shù).
(1)當a=0時,求g(x)在(1,1)處的切線方程;
(2)討論函數(shù)g(x)的單調(diào)性;
(3)若g(x)存在兩個極值點x1,x2,求證:無論實數(shù)a取何值都有$\frac{g({x}_{1})+g({x}_{2})}{2}$>g($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.箱中裝有標號分別為1,2,3,4,5,6的六個球(除標號外完全相同),從箱中一次摸出兩個球,記下號碼并放回,若兩球的號碼之積是4的倍數(shù),則獲獎.現(xiàn)有4人參與摸球,恰好有3人獲獎的概率是( 。
A.$\frac{624}{625}$B.$\frac{96}{625}$C.$\frac{16}{625}$D.$\frac{4}{625}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.若tanx=$\frac{1}{2}$,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),求角x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知P點的柱坐標是(2,$\frac{π}{4}$,1),點Q的球面坐標為(1,$\frac{π}{2}$,$\frac{π}{4}$),根據(jù)空間坐標系中兩點A(x1,y1,z1),B(x2,y2,z2)之間的距離公式|AB|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}+({z}_{1}-{z}_{2})^{2}}$,可知P、Q之間的距離為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{5}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.某地球儀上北緯60°緯線長度為6πcm,則該地球儀的體積為288cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設函數(shù)f(x)=eax-1,其中a∈R,e=2.718…
(Ⅰ)討論f(x)的單調(diào)性
(Ⅱ)當a=1時,求f(x)在x=1處的切線方程
(Ⅲ)求證:當x>1時.$\frac{1}{x}$$>\frac{e}{{e}^{x}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知非零向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=|$\overrightarrow$|且$\overrightarrow{a}$⊥($\overrightarrow{a}$$-2\overrightarrow$),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知$\overrightarrow a=(1,y)$,$\overrightarrow b=(\frac{1}{2},sin(2x-\frac{π}{6}))$且$\overrightarrow a$∥$\overrightarrow b$,設函數(shù)y=f(x)
(Ⅰ)求函數(shù)y=f(x)的對稱軸方程及單調(diào)遞減區(qū)間;
(Ⅱ)若$x∈[{0,\frac{2π}{3}}]$,求函數(shù)y=f(x)的最大值和最小值并寫出函數(shù)取最值時x的值.

查看答案和解析>>

同步練習冊答案