15.兩直線ρsin(θ+$\frac{π}{4}$)=2015,ρsin(θ-$\frac{π}{4}$)=2016的位置關(guān)系是相交.

分析 兩直線的極坐標(biāo)方程分別展開化簡(jiǎn),把y=ρsinθ,x=ρcosθ代入化為直角坐標(biāo)方程,利用直線斜率與位置之間的關(guān)系即可判斷出位置關(guān)系.

解答 解:兩直線ρsin(θ+$\frac{π}{4}$)=2015,ρsin(θ-$\frac{π}{4}$)=2016分別展開化為:$\frac{\sqrt{2}}{2}$(ρsinθ+ρcosθ)=2015,$\frac{\sqrt{2}}{2}$(ρsinθ-ρcosθ)=2016,
即y=-x+2015$\sqrt{2}$,y=x+2016$\sqrt{2}$,
∴兩條直線的斜率不相等,因此兩條直線相交.
故答案為:相交.

點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)方程、直線斜率與位置之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某研究性學(xué)習(xí)小組對(duì)4月份晝夜溫差大小與花卉種子發(fā)芽多少之間的關(guān)系研究,記錄了4月1日至4月5日的每天晝夜溫差與實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽數(shù),如下表:
日 期4月1日4月2日4月3日4月4日4月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2325302616
(Ⅰ)請(qǐng)根據(jù)表中 4月2日至4月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}x$+$\stackrel{∧}{a}$;若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,請(qǐng)用 4月1日和4月5日數(shù)據(jù)檢驗(yàn)?zāi)闼玫木性回歸方程是否可靠?
(Ⅱ)從4月1日至4月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率.
(參考公式:回歸直線的方程是$\stackrel{∧}{y}$=$\stackrel{∧}x$+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehata$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,將繪有函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,$\frac{π}{2}$<φ<π)部分圖象的紙片沿x軸折成直二面角,若AB之間的空間距離為$\sqrt{15}$,則f(-1)=( 。
A.-1B.1C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{12}$$\frac{7π}{12}$
Asin(ωx+φ)02-20
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程|f(x)|=m在[-$\frac{π}{2}$,$\frac{π}{6}$]上有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,-1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$),記f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的單調(diào)遞減區(qū)間及對(duì)稱中心;
(2)在△ABC中,∠A、∠B、∠C對(duì)邊分別為a、b、c,若f(A)=-$\frac{1}{2}$,a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是100名學(xué)生某次數(shù)學(xué)測(cè)試成績(jī)(單位:分)的頻率分布直方圖,則測(cè)試成績(jī)?cè)趨^(qū)間[50,70)中的學(xué)生人數(shù)是( 。
A.30B.25C.22D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{4}{x}+1,x>0}\\{-x-\frac{4}{x}+1,x<0}\end{array}\right.$.
(1)判斷函數(shù)f(x)的奇偶性;
(2)試用函數(shù)單調(diào)性定義說明函數(shù)f(x)在區(qū)間(0,2]和[2,+∞)上的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線C:ρ=2cosθ,直線l:$\left\{\begin{array}{l}{x=2-t}\\{y=\frac{3}{2}+\frac{3}{4}t}\end{array}\right.$(t是參數(shù)).
(1)寫出曲線C的參數(shù)方程,直線l的普通方程;
(2)過曲線C上任一點(diǎn)P作與l夾角為45°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=|x+a|+|x-2|,f(x)≤|x-4|的解集為A,若[1,2]⊆A,則實(shí)數(shù)a的取值范圍為[-3,0].

查看答案和解析>>

同步練習(xí)冊(cè)答案