11.某家具廠有方木料90m3,五合板600m2,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料0.1m3、五合板2m2;生產(chǎn)每個書櫥需要方木料0.2m3、五合板1m2.出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元,怎樣安排生產(chǎn)可使所得利潤最大?最大利潤為多少?

分析 本題一線性規(guī)劃的問題,據(jù)題意建立起約束條件與目標(biāo)函數(shù),作出可行域,利用圖形求解.

解答 解:設(shè)生產(chǎn)書桌x張,書櫥y張,利潤z元,則目標(biāo)函數(shù)z=80x+120y,
約束條件為$\left\{\begin{array}{l}{0.1x+0.2y≤90}\\{2x+y≤600}\\{x∈N}\\{y∈N}\end{array}\right.$
作出上可行域:
作出一組平行直線2x+3y=t,此直線經(jīng)過點A(100,400)時,即合理安排生產(chǎn),生產(chǎn)書桌100張,書櫥400個,有最大利潤為zmax=80×100+400×120=56000元.

點評 本題考查了性規(guī)劃的問題,將應(yīng)用題轉(zhuǎn)化為線性約束條件,再作出其圖形,從圖形上找出目標(biāo)函數(shù)取最大值的點.算出最優(yōu)解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點A(-1,-2),B(1,-1),C(x,2),若A、B、C三點共線,則x的值為( 。
A.-4B.-3C.2D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.圓錐曲線C的極坐標(biāo)方程為:ρ2(1+sin2θ)=2.
(1)以極點為原點,極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程,并求曲線C在直角坐標(biāo)系下的焦點坐標(biāo)以及在極坐標(biāo)系下的焦點坐標(biāo);
(2)直線l的極坐標(biāo)方程為θ=$\frac{π}{3}$(ρ∈R),若曲線C上的點M到直線l的距離最大,求點M的坐標(biāo)(直角坐標(biāo)和極坐標(biāo)均可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,且AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,且N為PC的中點.
(Ⅰ)證明:MN∥平面PAB;
(Ⅱ)求證:平面PMC⊥平面PAD;
(Ⅲ)求直線AN與平面PMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,直三棱柱ABC-A1B1C1中,AC=4,BC=3,AA1=4,AC⊥BC,點D在線段AB上.
(Ⅰ)證明AC⊥B1C;
(Ⅱ)若D是AB中點,證明AC1∥平面B1CD;
(Ⅲ)當(dāng)$\frac{BD}{AB}$=$\frac{1}{3}$時,求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,若$\frac{c}$=$\frac{1}{2}$,B=2C,a=4,則b的值為( 。
A.2$\sqrt{2}$B.4$\sqrt{2}$C.$\frac{8}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校高二年級學(xué)生會有理科生4名,其中3名男同學(xué);文科生3名,其中有1名男同學(xué),從這7名成員中隨機抽4人參加高中示范校驗收活動問卷調(diào)查.
(Ⅰ)設(shè)A為事件“選出的4人中既有文科生又有理科生”,求事件A的概率;
(Ⅱ)設(shè)X為選出的4人中男生人數(shù)與女生人數(shù)差的絕對值,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知{an}為等比數(shù)列,且a2=6,6a1+a3=30,求{an}的前n項和公式Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知冪函數(shù)y=f(x)的圖象過點(4,2),則${log_{\frac{1}{4}}}f(2)$=-$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案