2.圓錐曲線C的極坐標(biāo)方程為:ρ2(1+sin2θ)=2.
(1)以極點(diǎn)為原點(diǎn),極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系,求曲線C的直角坐標(biāo)方程,并求曲線C在直角坐標(biāo)系下的焦點(diǎn)坐標(biāo)以及在極坐標(biāo)系下的焦點(diǎn)坐標(biāo);
(2)直線l的極坐標(biāo)方程為θ=$\frac{π}{3}$(ρ∈R),若曲線C上的點(diǎn)M到直線l的距離最大,求點(diǎn)M的坐標(biāo)(直角坐標(biāo)和極坐標(biāo)均可).

分析 (1)利用互化公式可得直角坐標(biāo)方程,進(jìn)而得到焦點(diǎn)的直角坐標(biāo)與極坐標(biāo).
(2)直線l的極坐標(biāo)方程為θ=$\frac{π}{3}$(ρ∈R),可得直線l的直角坐標(biāo)方程為y=$\sqrt{3}x$,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$,(0≤θ<2π),設(shè)M($\sqrt{2}cosθ,sinθ$),利用點(diǎn)到直線的距離公式可得:M到直線的距離d,再利用三角函數(shù)的單調(diào)性即可得出.

解答 解:(1)∵圓錐曲線C的極坐標(biāo)方程為:ρ2(1+sin2θ)=2,
∴曲線C的直角坐標(biāo)方程:x2+y2+y2=2,化為$\frac{x^2}{2}+{y^2}=1$,
焦點(diǎn)直角坐標(biāo):F1(-1,0),F(xiàn)2(1,0)
焦點(diǎn)極坐標(biāo):F1(1,π),F(xiàn)2(1,0).
(2)∵直線l的極坐標(biāo)方程為β=$\frac{π}{3}$(ρ∈R),
∴直線l的直角坐標(biāo)方程為y=$\sqrt{3}x$,
曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$,(0≤θ<2π),
設(shè)M($\sqrt{2}cosθ,sinθ$),
則M到直線的距離d=$\frac{|\sqrt{6}cosθ-sinθ|}{\sqrt{3+1}}$=$\frac{|\sqrt{7}sin(θ+α)|}{2}$,
∴sin(θ+α)=1時(shí),曲線C上的點(diǎn)M到直線l的距離最大,
此時(shí)解得 sinθ=$\frac{\sqrt{7}}{7}$,cosθ=-$\frac{2\sqrt{21}}{7}$;sinθ=-$\frac{\sqrt{7}}{7}$,cosθ=$\frac{2\sqrt{21}}{7}$.
$M(\frac{{2\sqrt{21}}}{7},-\frac{{\sqrt{7}}}{7})$或$M(-\frac{{2\sqrt{21}}}{7},\frac{{\sqrt{7}}}{7})$

點(diǎn)評(píng) 本題考查了極坐標(biāo)化為直角坐標(biāo)、橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、點(diǎn)到直線的距離公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若$f(x)=2sin(3x+\frac{π}{4})$,則${f^/}(\frac{π}{4})$等于( 。
A.-6B.-2C.6D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=|x-a|,g(x)=$\frac{1}{x}$,若方程f(x)=g(x)-a有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值集合為(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在數(shù)列{an}中,其前n項(xiàng)和為Sn,且滿足Sn=2n2+n(n∈N*),則an=4n-1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.將三項(xiàng)式(x2+x+1)n展開(kāi),當(dāng)n=1,2,3,…時(shí),得到如下所示的展開(kāi)式,如圖所示的廣義楊輝三角形:
(x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
觀察多項(xiàng)式系數(shù)之間的關(guān)系,可以仿照楊輝三角形構(gòu)造如圖所示的廣義楊輝三角形,其構(gòu)造方法:第0行為1,以下各行每個(gè)數(shù)是它頭上與左右兩肩上3數(shù)(不足3數(shù)的,缺少的數(shù)計(jì)為0)之和,第k行共有2k+1個(gè)數(shù).若在(a+x)(x2+x+1)4的展開(kāi)式中,x6項(xiàng)的系數(shù)為46,則實(shí)數(shù)a的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.一個(gè)幾何體的三視圖及其尺寸如圖所示,則該幾何體的表面積為(  )
A.2$\sqrt{2}$+2$\sqrt{6}$+8B.4$\sqrt{2}$+4$\sqrt{6}$+8C.8$\sqrt{2}$+8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.為豐富少兒文體活動(dòng),某學(xué)校從籃球,足球,排球,橄欖球中任選2種球給甲班學(xué)生使用,剩余的2種球給乙班學(xué)生使用,則籃球和足球不在同一班的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某家具廠有方木料90m3,五合板600m2,準(zhǔn)備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料0.1m3、五合板2m2;生產(chǎn)每個(gè)書櫥需要方木料0.2m3、五合板1m2.出售一張書桌可獲利潤(rùn)80元,出售一個(gè)書櫥可獲利潤(rùn)120元,怎樣安排生產(chǎn)可使所得利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)$y=\frac{1}{x+1}$的減區(qū)間是(  )
A.(-1,+∞)B.(-∞,-1)C.(-∞,-1)∪(-1,+∞)D.(-∞,-1),(-1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案