7.在公比為2的等比數(shù)列{an}中,a1a3=6a2,則a4等于(  )
A.4B.8C.12D.24

分析 利用等比數(shù)列通項(xiàng)公式求出首項(xiàng),由此能求出第4項(xiàng).

解答 解:∵在公比為2的等比數(shù)列{an}中,a1a3=6a2,
∴${a}_{1}•{a}_{1}•{2}^{2}=6{{a}_{1}•2}^{\;}$,
解得a1=3,
∴a4=${a}_{1}•{q}^{3}=3•{2}^{3}$=24.
故選:D.

點(diǎn)評(píng) 本題考查等比數(shù)列的第4項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=(x-2)ex-$\frac{a}{2}$x2,其中a∈R,e為自然對(duì)數(shù)的底數(shù)
(Ⅰ)函數(shù)f(x)的圖象能否與x軸相切?若能與x軸相切,求實(shí)數(shù)a的值;否則,請(qǐng)說(shuō)明理由;
(Ⅱ)若函數(shù)y=f(x)+2x在R上單調(diào)遞增,求實(shí)數(shù)a能取到的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若acosA=bsinb,且$B>\frac{π}{2}$,則sinA+sinC的最大值是$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖某綜藝節(jié)目現(xiàn)場(chǎng)設(shè)有A,B,C,D四個(gè)觀眾席,現(xiàn)有由5不同顏色的馬甲可供現(xiàn)場(chǎng)觀眾選擇,同一觀眾席上的馬甲的顏色相同,相鄰觀眾席上的馬甲的顏色不相同,則不同的安排方法種數(shù)為260.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖所示,在正方體ABCD-A1B1C1D1中,己知棱長(zhǎng)為a,M,N分別是BD和AD的中點(diǎn),則B1M與D1N所成角的余弦值為(  )
A.-$\frac{\sqrt{15}}{15}$B.$\frac{\sqrt{30}}{10}$C.-$\frac{\sqrt{30}}{10}$D.$\frac{\sqrt{15}}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)Sn為正項(xiàng)數(shù)列{an}的前n項(xiàng)和,a1=2,Sn+1(Sn+1-2Sn+1)=3Sn(Sn+1),則a100等于( 。
A.2×398B.4×398C.2×399D.4×399

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=lnx+$\frac{1}{8}$x2
(1)求曲線f(x)在x=1處的切線方程;
(2)設(shè)P為曲線f(x)上的點(diǎn),求曲線C在點(diǎn)P處切線的斜率的最小值及傾斜角α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.(x-2y)6的展開(kāi)式中,x4y2的系數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在三棱柱ABC-A1B1C1中,各側(cè)面均為正方形,側(cè)面AA1C1C的對(duì)角線相交于點(diǎn)M,則BM與平面ABC所成角的大小是( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習(xí)冊(cè)答案