已知某個幾何體的三視圖,根據(jù)圖中尺寸,這個幾何體的體積是多少
 

考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:根據(jù)幾何體的三視圖,得出該幾何體是什么圖形,從而求出它的體積.
解答: 解:根據(jù)幾何體的三視圖,得;
該幾何體是底面是邊長為20的正方形,高為20的四棱錐,
∴它的體積是V=
1
3
Sh=
1
3
×202×20=
8000
3

故答案為:
8000
3
點評:本題考查了空間幾何體的三視圖的應用問題,是基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
2x,x≤0
,則f(f(
1
2
))的值是( 。
A、
2
B、-
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

y=
x2+1
2x-1
的導數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知 定義在R上的函數(shù),當x∈[0,2]時,f(x)=8(1-|x-1|),且對于任意的實數(shù)x∈[2n-2,2n+1-2](n∈N,且n≥2),都有f(x)=
1
2
f(
x
2
-1),若函數(shù)g(x)=f(x)-logax有且只有三個零點,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若平面α⊥平面β,平面β⊥平面γ,則( 。
A、α∥γB、α⊥γ
C、α∥γ或α⊥γD、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|3≤3x≤27},B={x|log3x>1}
(1)分別求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},C?A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=(1+x)2-mln(1+x),g(x)=x2+x+a.
(1)當a=0時,f(x)≥g(x)在(0,+∞)上恒成立,求實數(shù)m的取值范圍;
(2)當m=2時,若函數(shù)h(x)=f(x)-g(x)在[0,2]上恰有兩個不同的零點,求實數(shù)a的取值范圍;
(3)是否存在常數(shù)m,使函數(shù)f(x)和函數(shù)g(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=loga(2x+7)-1(a>0且a≠1)的圖象恒過點是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=2x+m與圓(x+2)2+y2=
1
5
和拋物線y2=2px(p>0)都相切,求P的值.

查看答案和解析>>

同步練習冊答案