分析 (1)求導(dǎo)數(shù),利用x=0是極值點(diǎn),求實(shí)數(shù)a的值;
(2)證明當(dāng)x>1時,lnx<x-1,可得x>1時,g(x)<$\frac{x-1}{x}$=1-$\frac{1}{x}$,即可比較大小.
解答 解:(1)∵f(x)=ln(x+1)-ax,
∴f′(x)=$\frac{1}{x+1}$-a,…(2分)
由題意f′(0)=1-a=0…((3分)
∴a=1…(4分)
(2)g(x)=$\frac{lnx}{x}$.…(5分)
先證當(dāng)x>1時,lnx<x-1
令h(x)=lnx-x+1,h′(x)=$\frac{1}{x}$-1<0.…(6分)
所以h(x)在(1,+∞)上單調(diào)遞減,
所以h(x)<h(1)=0,
所以當(dāng)x>1時,g(x)<$\frac{x-1}{x}$=1-$\frac{1}{x}$.…(8分)
所以g(6)+g(12)+…+g[n(n+1)]
$<1-\frac{1}{2×3}$+1-$\frac{1}{3×4}$+…+1-$\frac{1}{n(n+1)}$=n-1-($\frac{1}{2}$-$\frac{1}{n+1}$)=$\frac{2{n}^{2}-n-1}{2(n+1)}$…(12分)
點(diǎn)評 本題考查導(dǎo)數(shù)知識的綜合運(yùn)用,考查函數(shù)的單調(diào)性,考查大小比較,正確運(yùn)用導(dǎo)數(shù)是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2$\sqrt{3}$+4,+∞) | B. | [-2$\sqrt{3}$,+∞) | C. | (4,+∞) | D. | (-2$\sqrt{3}$-4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com