12.已知圓的方程為x2+y2-4x-2y+4=0,則該圓關(guān)于直線y=x對(duì)稱(chēng)圓的方程為( 。
A.x2+y2-2x-2y+1=0B.x2+y2-4x-4y+7=0C.x2+y2+4x-2y+4=0D.x2+y2-2x-4y+4=0

分析 (x-2)2+(y-1)2=1的圓心(2,1),半徑r=1,圓心(2,1),關(guān)于直線y=x對(duì)稱(chēng)的點(diǎn)(1,2),由此能求出結(jié)果.

解答 解:圓x2+y2-4x-2y+4=0,即(x-2)2+(y-1)2=1的圓心(2,1),半徑r=1,
圓心(2,1),關(guān)于直線y=x對(duì)稱(chēng)的點(diǎn)(1,2),
∴圓(x-2)2+(y-1)2=1關(guān)于直線y=x對(duì)稱(chēng)的圓方程為(x-1)2+(y-2)2=1,
即x2+y2-2x-4y+4=0.
故選:D.

點(diǎn)評(píng) 本題考查圓的方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)稱(chēng)性的靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=sin(x+$\frac{π}{2}$),g(x)=cos(x-$\frac{π}{2}$),則下列結(jié)論中正確的是( 。
A.函數(shù)y=f(x)•g(x)的最小正周期為2π
B.函數(shù)y=f(x)•g(x)的最大值為2
C.將函數(shù)y=f(x)的圖象向左平移$\frac{π}{2}$單位后得y=g(x)的圖象
D.將函數(shù)y=f(x)的圖象向右平移$\frac{π}{2}$單位后得y=g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.閱讀如圖框圖,回答問(wèn)題:?
①寫(xiě)出函數(shù)y關(guān)于x的表達(dá)式?;
②求出輸入x與輸出y相等的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2},x∈R)$的圖象的一部分如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=f(x)+f(x+2)在[-3,1]上的增區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.”a>-2”是函數(shù)f(x)=|x-a|在(-∞,1]上單調(diào)遞減的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.α為第四象限角,則$\frac{sinα}{{|{sinα}|}}+\frac{{|{cosα}|}}{cosα}+\frac{tanα}{{|{tanα}|}}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知tanα、tanβ是方程${x^2}-3\sqrt{3}x+4=0$的兩根,并且α、$β∈({\frac{π}{2},\frac{3π}{2}})$,則α+β的值是$\frac{8π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.當(dāng)x∈(-1,2)時(shí),復(fù)數(shù)z=(x+1)+(x-2)i(x∈R)對(duì)應(yīng)的復(fù)平面內(nèi)的點(diǎn)在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若銳角△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,且AB=2,AC=3,則BC=(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案