【題目】已知正方體的棱長(zhǎng)為2,點(diǎn)分別是棱的中點(diǎn),則二面角的余弦值為_________;若動(dòng)點(diǎn)在正方形(包括邊界)內(nèi)運(yùn)動(dòng),且平面,則線段的長(zhǎng)度范圍是_________.
【答案】
【解析】
延長(zhǎng)AM交DC于點(diǎn)Q,過(guò)C作AM垂線CG,垂足為G,連接NG,則∠NGC為二面角的平面角,計(jì)算可得結(jié)果;取的中點(diǎn),的中點(diǎn),連結(jié),,,取中點(diǎn),連結(jié),推導(dǎo)出平面平面,從而點(diǎn)的軌跡是線段,由此能求出的長(zhǎng)度范圍.
延長(zhǎng)AM交DC于點(diǎn)Q,過(guò)C作AM垂線CG,垂足為G,連接NG,
則∠NGC為二面角的平面角,
計(jì)算得,,
所以
取的中點(diǎn),的中點(diǎn),連接,,,取中點(diǎn),連接,
點(diǎn),分別是棱長(zhǎng)為2的正方體中棱,的中點(diǎn),
,,
,,
平面平面,
動(dòng)點(diǎn)在正方形(包括邊界)內(nèi)運(yùn)動(dòng),且面,
點(diǎn)的軌跡是線段,
,,
,
當(dāng)與重合時(shí),的長(zhǎng)度取最小值,
當(dāng)與(或重合時(shí),的長(zhǎng)度取最大值為.
的長(zhǎng)度范圍為.
故答案為:;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(1)求的單調(diào)區(qū)間和極值;
(2)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下三個(gè)條件:
①數(shù)列是首項(xiàng)為 2,滿足的數(shù)列;
②數(shù)列是首項(xiàng)為2,滿足(λ∈R)的數(shù)列;
③數(shù)列是首項(xiàng)為2,滿足的數(shù)列..
請(qǐng)從這三個(gè)條件中任選一個(gè)將下面的題目補(bǔ)充完整,并求解.
設(shè)數(shù)列的前n項(xiàng)和為,與滿足______,記數(shù)列,,求數(shù)列{}的前n項(xiàng)和;
(注:如選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)函數(shù),當(dāng)時(shí),恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用表示一個(gè)小于或等于的最大整數(shù).如:,,. 已知實(shí)數(shù)列、、對(duì)于所有非負(fù)整數(shù)滿足,其中是任意一個(gè)非零實(shí)數(shù).
(Ⅰ)若,寫(xiě)出、、;
(Ⅱ)若,求數(shù)列的最小值;
(Ⅲ)證明:存在非負(fù)整數(shù),使得當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段的延長(zhǎng)線上且滿足點(diǎn)的軌跡為.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某央企在一個(gè)社區(qū)隨機(jī)采訪男性和女性用戶各50名,統(tǒng)計(jì)他(她)們一天()使用手機(jī)的時(shí)間,其中每天使用手機(jī)超過(guò)6小時(shí)(含6小時(shí))的用戶稱為“手機(jī)迷”,否則稱其為“非手機(jī)迷”,調(diào)查結(jié)果如下:
男性用戶的頻數(shù)分布表
男性用戶日用時(shí)間分組() | |||||
頻數(shù) | 20 | 12 | 8 | 6 | 4 |
女性用戶的頻數(shù)分布表
女性用戶日用時(shí)間分組() | |||||
頻數(shù) | 25 | 10 | 6 | 8 | 1 |
(1)分別估計(jì)男性用戶,女性用戶“手機(jī)迷”的頻率;
(2)求男性用戶每天使用手機(jī)所花時(shí)間的中位數(shù);
(3)求女性用戶每天使用手機(jī)所花時(shí)間的平均數(shù)與標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線,把上各點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,關(guān)于有下述四個(gè)結(jié)論:
(1)函數(shù)在上是減函數(shù);
(2)方程在內(nèi)有2個(gè)根;
(3)函數(shù)(其中)的最小值為;
(4)當(dāng),且時(shí),,則.
其中正確結(jié)論的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系.xOy中,曲線C1的參數(shù)方程為( 為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(2)已知曲線C2的極坐標(biāo)方程為,點(diǎn)A是曲線C3與C1的交點(diǎn),點(diǎn)B是曲線C3與C2的交點(diǎn),且A,B均異于原點(diǎn)O,且|AB|=4,求α的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com