10.質(zhì)地均勻的正四面體表面分別印有0,1,2,3四個數(shù)字,某同學(xué)隨機(jī)的拋擲次正四面體2次,若正四面體與地面重合的表面數(shù)字分別記為m,n,且兩次結(jié)果相互獨立,互不影響.記m2+n2≤4為事件A,則事件A發(fā)生的概率為( 。
A.$\frac{3}{8}$B.$\frac{3}{16}$C.$\frac{π}{8}$D.$\frac{π}{16}$

分析 先求出基本事件總數(shù)N=42=16,再利用列舉法求出m2+n2≤4包含的基本事件個數(shù),由此能求出事件A發(fā)生的概率.

解答 解:質(zhì)地均勻的正四面體表面分別印有0,1,2,3四個數(shù)字,
某同學(xué)隨機(jī)的拋擲次正四面體2次,
正四面體與地面重合的表面數(shù)字分別記為m,n,
且兩次結(jié)果相互獨立,互不影響.
基本事件總數(shù)N=42=16,
記m2+n2≤4為事件A,
則事件A包含的基本事件有:
(0,0),(1,1),(0,1),(1,0),(0,2),(2,0)共6個,
∴事件A發(fā)生的概率為$p=\frac{6}{16}=\frac{3}{8}$.
故選:A.

點評 本題考查概率的求法,考查數(shù)據(jù)處理能力、運算求解能力以及應(yīng)用意識,考查必然與或然思想等,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線E:$\frac{x^2}{a^2}+{y^2}$=1(a>b,a≠1)上兩點A(x1,y1),B(x2,y2)(x1≠x2).
(1)若點A,B均在直線y=2x+1上,且線段AB中點的橫坐標(biāo)為-$\frac{1}{3}$,求a的值;
(2)記$\overrightarrow m=(\frac{x_1}{a},{y_1}),\overrightarrow n=(\frac{x_2}{a},{y_2})$,若$\overrightarrow m⊥\overrightarrow n$為坐標(biāo)原點,試探求△OAB的面積是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖,已知正三角形ABC的三個頂點都在球O的球面上,球心O到平面ABC的距離為1,且AB=3,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知定義在(0,+∞)上的函數(shù)f(x)滿足下列條件:①f(x)不恒為0;②對任意的正實數(shù)x和任意的實數(shù)y都有f(xy)=y•f(x).
(1)求證:方程f(x)=0有且僅有一個實數(shù)根;
(2)設(shè)a為大于1的常數(shù),且f(a)>0,試判斷f(x)的單調(diào)性,并予以證明;
(3)若a>b>c>1,且2b=a+c,求證:f(a)•f(c)<[f(b)]2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=ax2-2(a+1)x+3(a∈R).
(1)若函數(shù)f(x)在$[{\frac{3}{2},3}]$單調(diào)遞減,求實數(shù)a的取值范圍;
(2)令h(x)=$\frac{f(x)}{x-1}$,若存在${x_1},{x_2}∈[{\frac{3}{2},3}]$,使得|h(x1)-h(x2)|≥$\frac{a+1}{2}$成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}滿足${a_{n+1}}+{a_n}=(n+1)•cos\frac{nπ}{2}(n≥2,n∈{N^*})$,Sn是數(shù)列{an}的前n項和,若S2017+m=1010,且a1•m>0,則$\frac{1}{a_1}+\frac{1}{m}$的最小值為(  )
A.2B.$\sqrt{2}$C.$2\sqrt{2}$D.$2+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=5+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)曲線C交x軸于A、B兩點,且點A的橫坐標(biāo)小于點B的橫坐標(biāo),P為直線l上的動點,求△PAB周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在小正方形邊長為1的網(wǎng)格中畫出了某多面體的三視圖,則該多面體的外接球表面積為48π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,如果輸入N=30,則輸出S=(  )
A.26B.57C.225D.256

查看答案和解析>>

同步練習(xí)冊答案