分析 (I)數(shù)列{an}滿足al=-2,an+1=2an+4,an+1+4=2(an+4),即可得出.
(II)由(I)可得:an+4=2n,可得an=2n-4,當(dāng)n=1時(shí),a1=-2;n≥2時(shí),an≥0,可得n≥2時(shí),Sn=-a1+a2+a3+…+an.
解答 (I)證明:∵數(shù)列{an}滿足al=-2,an+1=2an+4,∴an+1+4=2(an+4),∴數(shù)列{an+4}是等比數(shù)列,公比與首項(xiàng)為2.
(II)解:由(I)可得:an+4=2n,∴an=2n-4,∴當(dāng)n=1時(shí),a1=-2;n≥2時(shí),an≥0,
∴n≥2時(shí),Sn=-a1+a2+a3+…+an=2+(22-4)+(23-4)+…+(2n-4)
=$\frac{2({2}^{n}-1)}{2-1}$-4(n-1)=2n+1-4n+2.n=1時(shí)也成立.
∴Sn=2n+1-4n+2.n∈N*.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式、分組求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16+3π | B. | 12+3π | C. | 8+4$\sqrt{2}$+3π | D. | 4+4$\sqrt{2}$+3π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p:?α∈R,sinα+cosα≥$\sqrt{2}$ | B. | ¬p:?α∈R,sinα+cosα≥$\sqrt{2}$ | ||
C. | ¬p:?α∈R,sinα+cosα>$\sqrt{2}$ | D. | ¬p:?α∈R,sinα+cosα>$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+i | B. | 2-i | C. | -1+i | D. | -1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com