已知橢圓
x2
2
+y2=1的左焦點為F,O為坐標原點.過點F的直線l交橢圓于A、B兩點.
(1)若直線l的傾斜角α=
π
4
,求|AB|.
(2)求弦AB的中點M的軌跡方程.
考點:軌跡方程,直線的傾斜角
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)直線方程與橢圓方程聯(lián)立,利用弦長公式,即可求得結(jié)論;
(2)利用點差法,即可求弦AB的中點M的軌跡方程;
解答: 解:(1)因為直線l的傾斜角α=
π
4
,直線l的斜率為1,方程為y=x+1,與橢圓方程聯(lián)立,可得3x2+4x=0
設(shè)A(x1,y1),B(x2,y2),則x1=0,x2=-
4
3

∴|AB|=
2
|x1-x2|=
4
2
3
;
(2)當直線AB的斜率存在時
設(shè)弦AB的中點M的坐標為(x,y),A(x1,y1),B(x2,y2
依題意有
x12
2
+y12=1
x22
2
+y22=1
x1+x2=2x
y1+y2=2y
y1-y2
x1-x2
=
y
x+1
,又
y1-y2
x1-x2
=
-x
2y
,化簡可得x2+x+2y2=0.…(7分)
當直線AB的斜率不存在時,中點為F(-1,0)也滿足上式.
綜上得:弦AB的中點M的軌跡方程為x2+x+2y2=0.
點評:本題考查直線與橢圓的位置關(guān)系中弦長的求法以及利用點差法求弦中點軌跡方程,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一家賓館裝修時需安裝兩種大小不同的門窗玻璃,大號玻璃需260塊,小號玻璃需720塊,已知商店出售的甲、乙兩種型號玻璃,它們每張可同時裁出大小號的玻璃塊數(shù)如表:
型號大號玻璃小號玻璃
甲型618
乙型49
其中甲型玻璃每張400元,乙型玻璃每張220元,問:甲、乙兩種型號的玻璃分別買多少張才最省錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB為⊙O的直徑,C為⊙O上一點,AD⊥平面ABC,AE⊥BD于E,AF⊥CD于F.求證:
(1)平面BCD⊥平面ACD;
(2)BD⊥平面AFE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}為遞增數(shù)列,且a2,a5是方程x2-12x+27=0的兩根,數(shù)列{bn}的前n項和Sn滿足Sn=
3n-1
2

(1)求數(shù)列{an}和{bn}的通項公式; 
(2)若cn=
an(n為奇數(shù))
bn(n為偶數(shù))
,求數(shù)列{cn}的前2n+1項和T2n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線a⊥直線b,直線b⊥平面β,則a與β的關(guān)系是(  )
A、a⊥βB、a∥β
C、a?βD、a?β或a∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列的首項a1=a(a≠
1
4
),an+1=
1
2
an,n=2k
an+
1
4
,n=2k-1
(k∈N*),且bn=a2n-1-
1
4
(n∈N*).
(1)求a2,a3
(2)判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)求
lim
n→∞
(b1+b2+…+bn).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點,
(1)求實數(shù)a和b的值;  
(2)求f(x)在[0,2)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

坐公交上班,355車10min一趟,466車15min一趟,則等車時間不多于8min的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是底面半徑為1,母線長均為2的圓錐和圓柱的組合體,則該組合體的側(cè)視圖的面積為
 

查看答案和解析>>

同步練習冊答案