19.一組數(shù)據(jù)共40個(gè),分為6組,第1組到第4組的頻數(shù)分別為10,5,7,6,第5組的頻率為0.1,則第6組的頻數(shù)為8.

分析 根據(jù)頻率=$\frac{頻數(shù)}{數(shù)據(jù)總和}$求得第5組的頻數(shù),則即可求得第6組的頻數(shù).

解答 解:第5組的頻數(shù)為40×0.1=4;
∴第6組的頻數(shù)為40-(10+5+7+6+4)=8.
故答案為:8.

點(diǎn)評(píng) 本題是對(duì)頻率、頻數(shù)靈活運(yùn)用的綜合考查,各小組頻數(shù)之和等于數(shù)據(jù)總和,各小組頻率之和等于1.頻率、頻數(shù)的關(guān)系頻率=$\frac{頻數(shù)}{數(shù)據(jù)總和}$.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-alnx.
(1)當(dāng)a=3,求f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)g(x)=f(x)-9x在區(qū)間$[\frac{1}{2},2]$上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某商品的銷售量y(件)與銷售價(jià)格x(元/件)存在線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為$\widehat{y}$=-10x+200,則下列結(jié)論正確的是( 。
A.y與x成正線性相關(guān)關(guān)系
B.當(dāng)商品銷售價(jià)格提高1元時(shí),商品的銷售量減少200件
C.當(dāng)銷售價(jià)格為10元/件時(shí),銷售量為100件
D.當(dāng)銷售價(jià)格為10元/件時(shí),銷售量為100件左右

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=5cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù)),則過點(diǎn)(3,0)且斜率為$\frac{4}{5}$的直線l被曲線C截得的線段中點(diǎn)的坐標(biāo)為( 。
A.(-$\frac{3}{2}$,-$\frac{18}{5}$)B.($\frac{4}{3}$,-$\frac{4}{3}$)C.(-2,-4)D.($\frac{3}{2}$,-$\frac{6}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(x+1),x>0}\\{\frac{1}{2}x+1,x≤0}\end{array}\right.$,若m<n,且f(m)=f(n),試寫出 m-n關(guān)于n的函數(shù)關(guān)系式,并指出該函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知定義在R上的偶函數(shù)f(x)滿足f(x+4)=f(x),且當(dāng)0≤x≤2時(shí),f(x)=min{-x2+2x,2-x},若方程f(x)-mx=0恰有兩個(gè)根,則m的取值范圍是( 。
A.(-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)B.[-∞,-$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)C.(-2,-$\frac{1}{3}$)∪($\frac{1}{3}$,2)D.[-2,-$\frac{1}{3}$]∪[$\frac{1}{3}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)$f(x)=cos(\sqrt{3}x+ϕ)$,若y=f(x)+f'(x)是偶函數(shù),則ϕ=-$\frac{π}{3}$+kπ,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個(gè)無窮數(shù)列的前三項(xiàng)是1,2,3,下列不可以作為其通項(xiàng)公式的是(  )
A.an=nB.an=n3-6n2+12n-6C.an=$\frac{1}{2}$n2-$\frac{1}{2}$n+1D.an=$\frac{6}{{n}^{2}-6n+11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.(1)數(shù)列{an}滿足關(guān)系anan+1=1-an+1(n∈N*),且a2010=2,則a2008=-3.
(2)數(shù)列{an}中,a1=1,an+1=2an+1,則{an}的通項(xiàng)公式為2n-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案