6.已知函數(shù)f(x)=|x-m|-|x-2|.
(1)若函數(shù)f(x)的值域?yàn)閇-4,4],求實(shí)數(shù)m的值;
(2)若不等式f(x)≥|x-4|的解集為M,且[2,4]⊆M,求實(shí)數(shù)m的取值范圍.

分析 (1)由不等式的性質(zhì)得:||x-m|-|x-2||≤|x-m-x+2|=|m-2|,即|m-2|=4,解得實(shí)數(shù)m的值;
(2)若不等式f(x)≥|x-4|的解集M=(-∞,m-2]或[m+2,+∞),結(jié)合[2,4]⊆M,可求實(shí)數(shù)m的取值范圍.

解答 解:(1)由不等式的性質(zhì)得:||x-m|-|x-2||≤|x-m-x+2|=|m-2|
因?yàn)楹瘮?shù)f(x)的值域?yàn)閇-4,4],
所以|m-2|=4,
即m-2=-4或m-2=4
所以實(shí)數(shù)m=-2或6.…(5分)
(2)f(x)≥|x-4|,即|x-m|-|x-2|≥|x-4|
當(dāng)2≤x≤4時,|x-m|≥|x-4|+|x-2|?|x-m|≥-x+4+x-2=2,|x-m|≥2,
解得:x≤m-2或x≥m+2,
即原不等式的解集M=(-∞,m-2]或M=[m+2,+∞),
∵[2,4]⊆M,
∴m+2≤2⇒m≤0或m-2≥4⇒m≥6
所以m的取值范圍是(-∞,0]∪[6,+∞). …(10分)

點(diǎn)評 本題考查的知識點(diǎn)是分段函數(shù)的應(yīng)用,絕對值三角不等式,函數(shù)的值域,集合的包含關(guān)系,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,已知矩形ABCD,AD=2,E為AB邊上的點(diǎn),現(xiàn)將△ADE沿DE翻折至△ADE,使得點(diǎn)A'在平面EBCD上的投影在CD上,且直線A'D與平面EBCD所成角為30°,則線段AE的長為$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ex-ax+1,其中a為實(shí)常數(shù),e=2.71828…為自然對數(shù)的底數(shù).
(1)當(dāng)a=e時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有最小值,并設(shè)函數(shù)f(x)的最小值為g(a),求證:g(a)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓方程為$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),其下焦點(diǎn)F1與拋物線x2=-4y的焦點(diǎn)重合,離心率e=$\frac{\sqrt{2}}{2}$,過F1的直線l與橢圓交于A、B兩點(diǎn),
(1)求橢圓的方程;
(2)求過點(diǎn)O、F1(其中O為坐標(biāo)原點(diǎn)),且與直線y=-$\frac{{a}^{2}}{c}$(其中c為橢圓半焦距)相切的圓的方程;
(3)求$\overrightarrow{{F}_{2}A}$•$\overrightarrow{{F}_{2}B}$=$\frac{5}{4}$時,直線l的方程,并求當(dāng)斜率大于0時的直線l被(2)中的圓(圓心在第四象限)所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)定義域?yàn)镽的函數(shù)$f(x)=\left\{\begin{array}{l}\begin{array}{l}{\frac{1}{x-1}\;,\;x>1}\\{1,x=1}\end{array}\\ \frac{1}{1-x},x<1\end{array}\right.$,若關(guān)于x的方程f2(x)+bf(x)+c=0有三個不同的解x1,x2,x3,則${x_1}^2+{x_2}^2+{x_3}^2$的值是( 。
A.1B.3C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3+a5=8,則S7=( 。
A.28B.32C.56D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題正確的是( 。
A.在△ABC中,角A,B,C的對邊分別是a,b,c,則a>b是cosA<cosB的充要條件
B.已知$p:\frac{1}{x+1}>0$,則$?p:\frac{1}{x+1}≤0$
C.命題p:對任意的x∈R,x2+x+1>0,則?p:對任意的x∈R,x2+x+1≤0
D.存在實(shí)數(shù)x∈R,使$sinx+cosx=\frac{π}{2}$成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一條漸近線經(jīng)過點(diǎn)(-3,4),則此雙曲線的離心率為( 。
A.$\frac{5}{3}$B.$\frac{{\sqrt{7}}}{3}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點(diǎn)O固定,且$|\overrightarrow{OA|}=2$,則點(diǎn)A的軌跡是(  )
A.一個點(diǎn)B.一條直線C.一個圓D.不能確定

查看答案和解析>>

同步練習(xí)冊答案