16.已知點(diǎn)O固定,且$|\overrightarrow{OA|}=2$,則點(diǎn)A的軌跡是( 。
A.一個(gè)點(diǎn)B.一條直線C.一個(gè)圓D.不能確定

分析 由向量的幾何意義可知|OA|=2,故A點(diǎn)軌跡為O為半徑的圓.

解答 解:∵$|\overrightarrow{OA|}=2$,∴|OA|=2,
∴點(diǎn)A的軌跡是以O(shè)為圓心,以2為半徑的圓,
故選:C.

點(diǎn)評(píng) 本題考查了向量的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-m|-|x-2|.
(1)若函數(shù)f(x)的值域?yàn)閇-4,4],求實(shí)數(shù)m的值;
(2)若不等式f(x)≥|x-4|的解集為M,且[2,4]⊆M,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某奶茶店為了促銷,準(zhǔn)備推出“擲骰子(投擲各面數(shù)字為1到6的均勻正方體,看面朝上的點(diǎn)數(shù))贏代金券”的活動(dòng),游戲規(guī)則如下:顧客每次消費(fèi)后,可同時(shí)投擲兩枚骰子一次,贏得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)和感謝獎(jiǎng)四個(gè)等級(jí)的代金券,用于在以后來店消費(fèi)中抵用現(xiàn)金.設(shè)事件A:“兩連號(hào)”;事件B:“兩個(gè)同點(diǎn)”;事件C:“同奇偶但不同點(diǎn)”.
①將以上三種擲骰子的結(jié)果,按出現(xiàn)概率由低到高,對(duì)應(yīng)定為一、二、三等獎(jiǎng)要求的條件;
②本著人人有獎(jiǎng)原則,其余不符合一、二、三等獎(jiǎng)要求的條件均定為感謝獎(jiǎng).請(qǐng)?zhí)嬖摰甓ǔ龈鱾(gè)等級(jí)獎(jiǎng)依次對(duì)應(yīng)的事件并求相應(yīng)概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$過點(diǎn)$({2,\sqrt{3}})$,離心率為$\sqrt{2}$.
(1)求雙曲線的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo);
(2)已知點(diǎn)P在雙曲線上,且∠F1PF2=90°,求點(diǎn)P到x軸的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在數(shù)列{an}中,已知a1=2,a2=7,an+2等于${a_n}•{a_{n+1}}(n∈{N^*})$的個(gè)位數(shù),則a2016的值是(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.計(jì)算:
(Ⅰ)${({0.027})^{\frac{1}{3}}}-{(\frac{1}{8})^{-2}}+{(2\frac{7}{9})^{\frac{1}{2}}}•{(1+\sqrt{5})^0}$
(Ⅱ)$\frac{1}{2}lg25+2lg\sqrt{2}-lg\sqrt{0.1}+{log_4}32$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知遞減等差數(shù)列{an}中,a3a7=-12,a4+a6=4,則
(1)求數(shù)列的通項(xiàng)an及前n項(xiàng)和Sn;
(2)求數(shù)列{|an|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)化簡(jiǎn):$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3π}{2})}{cos(-α-3π)sin(-3π-α)}$;
(2)已知f(x)=$\frac{sin(π-x)cos(2π-x)tan(-x+π)}{{cos(-\frac{π}{2}+x)}}$,求f(-$\frac{31π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=sinx-cosx,且f′(x)=$\frac{1}{2}$f(x),則tan2x的值是( 。
A.-$\frac{2}{3}$B.-$\frac{4}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案