5.(1)化簡(jiǎn):$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3π}{2})}{cos(-α-3π)sin(-3π-α)}$;
(2)已知f(x)=$\frac{sin(π-x)cos(2π-x)tan(-x+π)}{{cos(-\frac{π}{2}+x)}}$,求f(-$\frac{31π}{3}$)的值.

分析 (1)利用誘導(dǎo)公式化簡(jiǎn)所給的式子,可得結(jié)果.
(2)利用誘導(dǎo)公式化簡(jiǎn)條件可得f(x)=-sinx,從而求得f(-$\frac{31π}{3}$)的值.

解答 解:(1)$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3π}{2})}{cos(-α-3π)sin(-3π-α)}$=$\frac{tanα•cosα•cosα}{-cosα•sinα}$=$\frac{sinαcosα}{-sinαcosα}$=-1,
(2)∵已知f(x)=$\frac{sin(π-x)cos(2π-x)tan(-x+π)}{{cos(-\frac{π}{2}+x)}}$=$\frac{sinx•cosx•(-tanx)}{sinx}$=-sinx,
求f(-$\frac{31π}{3}$)=-sin(-$\frac{31π}{3}$)=sin$\frac{31π}{3}$=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題主要考查利用誘導(dǎo)公式進(jìn)行化簡(jiǎn)求值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若雙曲線(xiàn)$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一條漸近線(xiàn)經(jīng)過(guò)點(diǎn)(-3,4),則此雙曲線(xiàn)的離心率為(  )
A.$\frac{5}{3}$B.$\frac{{\sqrt{7}}}{3}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知點(diǎn)O固定,且$|\overrightarrow{OA|}=2$,則點(diǎn)A的軌跡是( 。
A.一個(gè)點(diǎn)B.一條直線(xiàn)C.一個(gè)圓D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在平面直角坐標(biāo)系中,點(diǎn)P是直線(xiàn)l:x=-$\frac{1}{2}$上一動(dòng)點(diǎn),定點(diǎn)F($\frac{1}{2}$,0)點(diǎn)Q為PF的中點(diǎn),動(dòng)點(diǎn)M滿(mǎn)足$\overline{MQ}$•$\overline{PF}$=0,$\overline{MP}$=λ$\overline{OF}$(λ∈R),過(guò)點(diǎn)M作圓(x-3)2+y2=2的切線(xiàn),切點(diǎn)分別為S,T,則|ST|的最小值為( 。
A.$\frac{2\sqrt{30}}{5}$B.$\frac{\sqrt{30}}{5}$C.$\frac{7}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知復(fù)數(shù)z滿(mǎn)足(1+2i3)z=1+2i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)$\overline{z}$等于(  )
A.$\frac{3}{5}$+$\frac{4}{5}i$B.-$\frac{3}{5}$+$\frac{4}{5}i$C.$\frac{3}{5}$-$\frac{4}{5}i$D.-$\frac{3}{5}-\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$,(a∈R).
(1)設(shè)函數(shù)h(x)=f(x)-g(x),當(dāng)a>0時(shí)求函數(shù)h(x)的單調(diào)區(qū)間;
(2)若在[1,e](e=2.718…)上存在一點(diǎn)x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合A={x|x2-11x-12<0},集合B={x|x=3n+1,n∈Z},則A∩B等于{1,4,7,10}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知cos(α-30°)+sinα=$\frac{3}{5}\sqrt{3}$,那么cos(60°-α)=( 。
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C:ρ2=$\frac{15}{1+2co{s}^{2}θ}$,直線(xiàn)l為2ρsin(θ+$\frac{π}{3}$)=$\sqrt{3}$.
(1)判斷曲線(xiàn)C與直線(xiàn)l的位置關(guān)系,寫(xiě)出直線(xiàn)l的參數(shù)方程;
(2)設(shè)直線(xiàn)l與曲線(xiàn)C的兩個(gè)交點(diǎn)為A、B,求|AB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案