17.已知集合A={x|x2-11x-12<0},集合B={x|x=3n+1,n∈Z},則A∩B等于{1,4,7,10}.

分析 求出A中不等式的解集確定出A,找出A與B的交集即可.

解答 解:由A中不等式變形得:(x-12)(x+1)<0,
解得:-1<x<12,即A={x|-1<x<12},
∵B={x|x=3n+1,n∈Z},
∴A∩B={1,4,7,10},
故答案為:{1,4,7,10}.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某奶茶店為了促銷,準(zhǔn)備推出“擲骰子(投擲各面數(shù)字為1到6的均勻正方體,看面朝上的點(diǎn)數(shù))贏代金券”的活動,游戲規(guī)則如下:顧客每次消費(fèi)后,可同時(shí)投擲兩枚骰子一次,贏得一等獎、二等獎、三等獎和感謝獎四個(gè)等級的代金券,用于在以后來店消費(fèi)中抵用現(xiàn)金.設(shè)事件A:“兩連號”;事件B:“兩個(gè)同點(diǎn)”;事件C:“同奇偶但不同點(diǎn)”.
①將以上三種擲骰子的結(jié)果,按出現(xiàn)概率由低到高,對應(yīng)定為一、二、三等獎要求的條件;
②本著人人有獎原則,其余不符合一、二、三等獎要求的條件均定為感謝獎.請?zhí)嬖摰甓ǔ龈鱾(gè)等級獎依次對應(yīng)的事件并求相應(yīng)概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知遞減等差數(shù)列{an}中,a3a7=-12,a4+a6=4,則
(1)求數(shù)列的通項(xiàng)an及前n項(xiàng)和Sn;
(2)求數(shù)列{|an|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)化簡:$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3π}{2})}{cos(-α-3π)sin(-3π-α)}$;
(2)已知f(x)=$\frac{sin(π-x)cos(2π-x)tan(-x+π)}{{cos(-\frac{π}{2}+x)}}$,求f(-$\frac{31π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知某正四面體的內(nèi)切球體積是1,則該正四面體的外接球的體積是(  )
A.27B.16C.9D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.i為虛數(shù)單位,則($\frac{1+i}{1-i}}$)2016=( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x+$\frac{a}{x}$+b(x≠0),其中a,b∈R.
(Ⅰ)若f′(1)=9,f(x)的圖象過點(diǎn)(2,7),求f(x)的解析式;
(Ⅱ)討論f(x)的單調(diào)性;
(Ⅲ)當(dāng)a>2時(shí),求f(x)在區(qū)間[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=sinx-cosx,且f′(x)=$\frac{1}{2}$f(x),則tan2x的值是( 。
A.-$\frac{2}{3}$B.-$\frac{4}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若存在實(shí)常數(shù)k和b,使得函數(shù)F(x)和G(x)對其公共定義域上的任意實(shí)數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”.已知函數(shù)f(x)=x2,g(x)=2elnx,則f(x)和g(x)之間的“隔離直線”的方程為$y=2\sqrt{e}x-e$.

查看答案和解析>>

同步練習(xí)冊答案