2.從3男1女4名學(xué)生中,隨機(jī)抽取2名學(xué)生組成小組代表班級(jí)參加學(xué)校的比賽活動(dòng),則該小組中有女生的概率為$\frac{1}{2}$.

分析 所選2人中至少有1名女生的對(duì)立事件是所選兩人中沒(méi)有女生,由此能求出所選2人中至少有1名女生的概率.

解答 解:所選2人中至少有1名女生的對(duì)立事件是所選兩人中沒(méi)有女生,
∴所選2人中至少有1名女生的概率為p=1-$\frac{{C}_{3}^{2}}{{C}_{4}^{2}}$=1-$\frac{1}{2}$=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)立事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)i為虛數(shù)單位,則$\frac{3-i}{i}$=( 。
A.-1-3iB.1-3iC.-1+3iD.1+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖:區(qū)域A是正方形OABC(含邊界),區(qū)域B是三角形ABC(含邊界).
(Ⅰ)向區(qū)域A隨機(jī)拋擲一粒黃豆,求黃豆落在區(qū)域B的概率;
(Ⅱ)若x,y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(x,y)落在區(qū)域B的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC中點(diǎn).
(Ⅰ)證明:AE⊥PD;
(Ⅱ)設(shè)AB=1,PD與平面ABCD所成的角為$\frac{π}{4}$,求二面角E-AF-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知x=log52,y=ln2,z=${2}^{\frac{1}{2}}$,則下列結(jié)論正確的是(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=lnx-$\frac{a(x-1)}{x+2}$.
(1)若a=4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(0,1]內(nèi)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若x1、x2∈R+,且x1≤x2,求證:(lnx1-lnx2)(x1+2x2)≤3(x1-x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知棱長(zhǎng)為$\sqrt{6}$的正四面體ABCD(四個(gè)面都是正三角形),在側(cè)棱AB上任取一點(diǎn)P(與A,B都不重合),若點(diǎn)P到平面BCD及平面ACD的距離分別為a,b,則$\frac{4}{a}$+$\frac{1}$的最小值為( 。
A.$\frac{7}{2}$B.4C.$\frac{9}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,拋物線(xiàn)E:x2=4y的焦點(diǎn)是橢圓C的一個(gè)頂點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若A,B分別是橢圓C的左、右頂點(diǎn),直線(xiàn)y=k(x-4)(k≠0)與橢圓C交于不同的兩點(diǎn)M,N,直線(xiàn)x=1與直線(xiàn)BM交于點(diǎn)P.
(i)證明:A,P,N三點(diǎn)共線(xiàn);
(ii)求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,直線(xiàn)l:$\left\{\begin{array}{l}{x=1+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t為參數(shù)),與曲線(xiàn)C:$\left\{\begin{array}{l}{x=4{k}^{2}}\\{y=4k}\end{array}\right.$(k為參數(shù))交于A,B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案