3.設(shè)復(fù)數(shù)z=a+bi(a,b∈R,b>0),且$\overline z={z^2}$,則z的虛部為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{3}{2}$

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、虛部的定義即可得出.

解答 解:復(fù)數(shù)z=a+bi(a,b∈R,b>0),且$\overline z={z^2}$,
∴a-bi=a2-b2+2abi.
∴a=a2-b2,-b=2ab.
解得a=-$\frac{1}{2}$,b=$\frac{\sqrt{3}}{2}$.
則z的虛部為$\frac{\sqrt{3}}{2}$.
故選:C.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖為中國傳統(tǒng)智力玩具魯班鎖,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對稱,六根完全相同的正四棱柱分成三組,經(jīng)90°榫卯起來.現(xiàn)有一魯班鎖的正四棱柱的底面正方形邊長為1,欲將其放入球形容器內(nèi)(容器壁的厚度忽略不計(jì)),若球形容器表面積的最小值為30π,則正四棱柱體的高為( 。
A.$2\sqrt{6}$B.$2\sqrt{7}$C.$4\sqrt{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f0(x)=$\frac{cx+d}{ax+b}$(a≠0,ac-bd≠0),設(shè)fn(x)為fn-1(x)的導(dǎo)數(shù),n∈N*
(1)求f1(x),f2(x)
(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知直線l:mx+y-2m-1=0,圓C:x2+y2-2x-4y=0,當(dāng)直線l被圓C所截得的弦長最短時(shí),實(shí)數(shù)m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點(diǎn)為F(-1,0),左準(zhǔn)線為x=-2.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知直線l交橢圓C于A,B兩點(diǎn).
①若直線l經(jīng)過橢圓C的左焦點(diǎn)F,交y軸于點(diǎn)P,且滿足$\overrightarrow{PA}=λ\overrightarrow{AF}$$\overrightarrow{PB}=μ\overrightarrow{BF}$,求證:λ+μ為常數(shù);
②若OA⊥OB(O為原點(diǎn)),求△AOB的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x∈N|3-2x>0},B={x|x2≤4},則A∩B=( 。
A.{x|-2≤x<1}B.{x|x≤2}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}滿足a1=1,an+1=$\frac{a_n}{{2{a_n}+1}}$(n∈N*),bn=$\frac{a_n}{2n+1}$,則數(shù)列{bn}的前n項(xiàng)和Sn=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$f(x)=\frac{{1+{e^x}}}{{1-{e^x}}}$(其中e是自然對數(shù)的底數(shù))的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z-i=1+i,則|z|=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.5

查看答案和解析>>

同步練習(xí)冊答案