13.若復數(shù)z-i=1+i,則|z|=( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.5

分析 求出z,直接利用復數(shù)的模的求法,求解即可.

解答 解:∵z-i=1+i,
∴z=1+2i,
故|z|=$\sqrt{1+4}$=$\sqrt{5}$,
故選:C..

點評 本題是基礎題,考查復數(shù)的基本運算,考查計算能力,?碱}型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.設復數(shù)z=a+bi(a,b∈R,b>0),且$\overline z={z^2}$,則z的虛部為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在平面直角坐標系中,角α的頂點與原點O重合,始邊與x軸的非負半軸重合,點P(-2t,t)(t≠0)是角α終邊上的一點,則$tan(α+\frac{π}{4})$的值為( 。
A.$3-2\sqrt{2}$B.3C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)f(x)=1nx-$\frac{1}{e^2}$x+a有零點,則實數(shù)a的取值范圍是(  )
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{2}}{2}$,右焦點為F,上頂點為A,且△AOF的面積為$\frac{1}{2}$(O為坐標原點).
(1)求橢圓C的方程;
(2)若點M在以橢圓C的短軸為直徑的圓上,且M在第一象限,過M作此圓的切線交橢圓于P,Q兩點.試問△PFQ的周長是否為定值?若是,求此定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.一個底面積為1的正四棱柱的頂點都在同一球面上,若此球的表面積為20π,則該四棱柱的高為( 。
A.$\sqrt{3}$B.2C.3$\sqrt{2}$D.$\sqrt{19}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.圓x2+y2-2y=0與曲線y=|x|-1的公共點個數(shù)為( 。
A.4B.3C.2D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.北京市2016年12個月的PM2.5平均濃度指數(shù)如圖所示.由圖判斷,四個季度中PM2.5的平均濃度指數(shù)方差最小的是( 。
A.第一季度B.第二季度C.第三季度D.第四季度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知雙曲線x2+ny2=1(n∈R)與橢圓$\frac{x^2}{6}+\frac{y^2}{2}=1$有相同的焦點,則該雙曲線的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

同步練習冊答案