精英家教網 > 高中數學 > 題目詳情

統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關于行駛速度x(千米/小時)的函數解析式可以表示為:.已知甲、乙兩地相距100千米.
(I)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

(I)17.5;(Ⅱ)80千米/小時,11.25升.

解析試題分析:(I)將代入得到每小時的耗油量,再根據路程算出行駛時間,從而得到了從甲地到乙地的耗油量;(Ⅱ)設耗油量為升,通過每小時的耗油量及行駛時間得到的表達式.再通過求導研究其單調性,從而得到的最小值.即得當汽車以80千米/小時的速度勻速行駛時,從甲地到乙地耗油最少,最少為11.25升.
試題解析:(I)當時,汽車從甲地到乙地行駛了小時,
要耗油(升).
答:當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地耗油17.5升.
(II)當速度為x千米/小時時,汽車從甲地到乙地行駛了小時,設耗油量為升,
依題意得,,得
當x∈(0,80)時,h'(x)<0,h(x)是減函數;
當x∈(80,120)時,h'(x)>0,h(x)是增函數.∴當x=80時,h(x)取到極小值h(80)=11.25.
因為h(x)在(0,120]上只有一個極值,所以它是最小值.
答:當汽車以80千米/小時的速度勻速行駛時,從甲地到乙地耗油最少,最少為11.25升.    13分
考點:1.函數的單調性;2.利用導數研究函數單調性;3.函數的最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

函數的定義域為(a為實數),
(1)當時,求函數的值域。
(2)若函數在定義域上是減函數,求a的取值范圍
(3)求函數上的最大值及最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

命題p:關于x的不等式,對一切恒成立;命題q:函是增函數.若p或q為真,p且q為假,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)當時,解不等式
(2)若函數有最大值,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

用定義證明函數f(x)=x2+2x-1在(0,1]上是減函數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1) 當時,函數恒有意義,求實數a的取值范圍;
(2) 是否存在這樣的實數a,使得函數在區(qū)間上為增函數,并且的最大值為1.如果存在,試求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若存在,使不等式成立,求實數的取值范圍;
(2)設,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是定義在上的偶函數,且時,,函數的值域為集合.
(I)求的值;
(II)設函數的定義域為集合,若,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在上的函數同時滿足以下條件:①函數上是減函數,在上是增函數;②是偶函數;③函數處的切線與直線垂直.
(Ⅰ)求函數的解析式;
(Ⅱ)設,若存在使得,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案