已知函數(shù)
(1)當時,解不等式
(2)若函數(shù)有最大值,求實數(shù)的值.

(1)解集為;(2)

解析試題分析:(1)一元二次不等式一般都化為的形式,然后求出一元二次方程的根(如果有的話,當然不一定具體寫方程的根是什么),再寫出不等式的解集.(2)二次函數(shù)有最大值,說明二次項系數(shù)為正,然后直接利用最值公式立出關(guān)于參數(shù)方程即可.二次函數(shù)的最值為(最大最小由的正負確定).
試題解析:(1)當時,有,即
解得 
不等式的解集為    6分
(2)由題意     10分

因此      12分
考點:(1)一元二次不等式的解法;(2)二次函數(shù)的最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(I)若函數(shù)為奇函數(shù),求實數(shù)的值;
(II)若對任意的,都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)。
(Ⅰ)若且對任意實數(shù)均有成立,求的表達式;
(Ⅱ)在(Ⅰ)的條件下,當時,是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)為實數(shù),函數(shù)
(1)當時,討論的奇偶性;
(2)當時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),恒過定點 (3,2).
(1)求實數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個單位,再向左平移個單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,求的解析式;
(3)對于定義在[1,9]的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)).
(1)求的單調(diào)區(qū)間;
(2)如果是曲線上的任意一點,若以為切點的切線的斜率恒成立,求實數(shù)的最小值;
(3)討論關(guān)于的方程的實根情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米.
(I)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,畫出函數(shù)的簡圖,并指出的單調(diào)遞減區(qū)間;
(2)若函數(shù)有4個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若,解不等式;
(2)若,,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案