已知函數(shù).
(1)當(dāng)時(shí),畫出函數(shù)的簡(jiǎn)圖,并指出的單調(diào)遞減區(qū)間;
(2)若函數(shù)有4個(gè)零點(diǎn),求a的取值范圍.
(1)函數(shù)的簡(jiǎn)圖如下圖所示,的單調(diào)遞減區(qū)間為和;
(2).
解析試題分析: (1)將代入解析式,然后去掉絕對(duì)值,得一個(gè)兩段都為二次函數(shù)的分段函數(shù):
,據(jù)此可畫出圖象,由圖象可得的單調(diào)遞減區(qū)間.
(2)由,得,這樣問題轉(zhuǎn)化為曲線與直線有4個(gè)不同交點(diǎn),由(1)題中的圖像可得a的取值范圍.
試題解析:(1)當(dāng)時(shí),,
由圖可知,的單調(diào)遞減區(qū)間為和. 6分
(2)由,得,
∴曲線與直線有4個(gè)不同交點(diǎn),
∴根據(jù)(1)中圖像得. 12分
考點(diǎn):1、函數(shù)的圖象;2、函數(shù)的單調(diào)區(qū)間;3、函數(shù)的零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當(dāng)時(shí), 的取值范圍恰為,則稱函數(shù)是上的正函數(shù),區(qū)間叫做函數(shù)的等域區(qū)間.
(1)已知是上的正函數(shù),求的等域區(qū)間;
(2)試探求是否存在,使得函數(shù)是上的正函數(shù)?若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)當(dāng)時(shí),解不等式
(2)若函數(shù)有最大值,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1) 當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)a的取值范圍;
(2) 是否存在這樣的實(shí)數(shù)a,使得函數(shù)在區(qū)間上為增函數(shù),并且的最大值為1.如果存在,試求出a的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
揚(yáng)州某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅(jiān)固性及石塊用料等因素,設(shè)計(jì)其橫斷面要求面積為平方米,且高度不低于米.記防洪堤橫斷面的腰長(zhǎng)為(米),外周長(zhǎng)(梯形的上底線段與兩腰長(zhǎng)的和)為(米).
⑴求關(guān)于的函數(shù)關(guān)系式,并指出其定義域;
⑵要使防洪堤橫斷面的外周長(zhǎng)不超過米,則其腰長(zhǎng)應(yīng)在什么范圍內(nèi)?
⑶當(dāng)防洪堤的腰長(zhǎng)為多少米時(shí),堤的上面與兩側(cè)面的水泥用料最。磾嗝娴耐庵荛L(zhǎng)最。?求此時(shí)外周長(zhǎng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是定義在上的偶函數(shù),且時(shí),,函數(shù)的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/c9/4/1dnnf2.png" style="vertical-align:middle;" />.
(I)求的值;
(II)設(shè)函數(shù)的定義域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/d/1bpaa3.png" style="vertical-align:middle;" />,若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)是定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/dd/0/1yijr2.png" style="vertical-align:middle;" />的奇函數(shù).
(Ⅰ)求的值;
(Ⅱ)若,且在上的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),.
⑴ 求不等式的解集;
⑵ 如果關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com