若函數(shù)為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當(dāng)時(shí), 的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做函數(shù)的等域區(qū)間.
(1)已知上的正函數(shù),求的等域區(qū)間;
(2)試探求是否存在,使得函數(shù)上的正函數(shù)?若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

(1);(2)存在,

解析試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0f/0/1cj5s4.png" style="vertical-align:middle;" />是上的正函數(shù),根據(jù)正函數(shù)的定義建立方程組,解之可求出的等域區(qū)間;
(2)根據(jù)函數(shù)函數(shù)上的正函數(shù)建立方程組,消去,求出的取值范圍,轉(zhuǎn)化成關(guān)于的方程上有實(shí)數(shù)解進(jìn)行求解.
試題解析:(1)
(2)假設(shè)存在,使得函數(shù)上的正函數(shù),且此時(shí)函數(shù)在上單調(diào)遞減
存在使得: (*)
兩式相減得,代入上式:
即關(guān)于的方程上有解
方法①參變分離:即
,所以
實(shí)數(shù)的取值范圍為
方法②實(shí)根分布:令,即函數(shù)的圖像在內(nèi)與軸有交點(diǎn),,解得
方法③ :(*)式等價(jià)于方程上有兩個(gè)不相等的實(shí)根
 
考點(diǎn):函數(shù)的值域

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)  ().
(1)若為偶函數(shù),求實(shí)數(shù)的值;
(2)已知,若對(duì)任意都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(I)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(II)若對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是奇函數(shù),且.
(1)求實(shí)數(shù)的值;
(2)判斷函數(shù)上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.
(1)若,是否存在、,使為偶函數(shù),如果存在,請(qǐng)舉例并證明你的結(jié)論,如果不存在,請(qǐng)說(shuō)明理由;
(2)若,,求上的單調(diào)區(qū)間;
(3)已知,對(duì),,有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),
(1)求的函數(shù)解析式,并用分段函數(shù)的形式給出;
(2)作出函數(shù)的簡(jiǎn)圖;
(3)寫出函數(shù)的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)。
(Ⅰ)若且對(duì)任意實(shí)數(shù)均有成立,求的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為實(shí)數(shù),函數(shù)
(1)當(dāng)時(shí),討論的奇偶性;
(2)當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),畫出函數(shù)的簡(jiǎn)圖,并指出的單調(diào)遞減區(qū)間;
(2)若函數(shù)有4個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案