3.若($\sqrt{x}$-$\frac{1}{x}$)n的二項展開式中各項的二項式系數(shù)的和是64,則n=6.

分析 利用二項展開式中各項的二項式系數(shù)的和是2n,即可得出n.

解答 解:($\sqrt{x}$-$\frac{1}{x}$)n的二項展開式中各項的二項式系數(shù)的和是64,則2n=64,解得n=6.
故答案為:6.

點評 本題考查了二項式定理的性質(zhì)及其應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x-$\frac{5}{2}$|+|x-a|,x∈R
(Ⅰ)當a=-$\frac{1}{2}$時,求不等式f(x)>4的解集;
(Ⅱ)關(guān)于x的不等式f(x)≥a在R上恒成立,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.我國古代數(shù)學(xué)名著《九章算術(shù)》有“米谷粒分”問題:糧倉開倉收糧,有人送來米1494石,檢驗發(fā)現(xiàn)米內(nèi)夾谷,抽樣取米一把,數(shù)得270粒內(nèi)夾谷30粒,則這批米內(nèi)夾谷約為(  )
A.17石B.166石C.387石D.1310石

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}為等比數(shù)列,且a2013+a2015=$\int_0^2{\sqrt{4-{x^2}}}$dx,則a2014(a2012+2a2014+a2016)的值為( 。
A.π2B.2C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)的圖象在區(qū)間[0,1]上恰有3個最高點,則ω的取值范圍為( 。
A.[$\frac{19π}{4}$,$\frac{27π}{4}$)B.[$\frac{9π}{2}$,$\frac{13π}{2}$)C.[$\frac{17π}{4}$,$\frac{25π}{4}$)D.[4π,6π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.數(shù)列{an}對于確定的正整數(shù)m,若存在正整數(shù)n使得am+n=am+an成立,則稱數(shù)列{an}為“m階可分拆數(shù)列”.
(1)設(shè){an}是首項為2,公差為2的等差數(shù)列,證明{an}為“3階可分拆數(shù)列”;
(2)設(shè)數(shù)列{an}的前n項和為${S_n}={2^n}-a$(a>0),若數(shù)列{an}為“1階可分拆數(shù)列”,求實數(shù)a的值;
(3)設(shè)${a_n}={2^n}+{n^2}+12$,試探求是否存在m使得若數(shù)列{an}為“m階可分拆數(shù)列”.若存在,請求出所有m,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.當m變化時,不在直線$(1-{m^2})x+2my-2\sqrt{3}m-2=0$上的點構(gòu)成區(qū)域G,P(x,y)是區(qū)域G內(nèi)的任意一點,則 $\frac{{\frac{3}{2}x+\frac{{\sqrt{3}}}{2}y}}{{\sqrt{3}\sqrt{{x^2}+{y^2}}}}$的取值范圍是( 。
A.(1,2)B.[$\frac{1}{2},1$]C.($\frac{1}{2},1$)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.甲,乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標劃分:指標大于或等于95為正品,小于95為次品,現(xiàn)隨機抽取這兩臺車床生產(chǎn)的零件各100件進行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標[85,90)[90,95)[95,100)[100,105)[105,110)
機床甲81240328
機床乙71840296
(1)試分別估計甲機床、乙機床生產(chǎn)的零件為正品的概率;
(2)甲機床生產(chǎn)一件零件,若是正品可盈利160元,次品則虧損20元;乙機床生產(chǎn)一件零件,若是正品可盈利200元,次品則虧損40元,在(1)的前提下,現(xiàn)需生產(chǎn)這種零件2件,以獲得利潤的期望值為決策依據(jù),應(yīng)該如何安排生產(chǎn)最佳?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知拋物線E的頂點為原點O,焦點為圓F:x2+y2-4x+3=0的圓心F.經(jīng)過點F的直線l交拋物線E于A,D兩點,交圓F于B,C兩點,A,B在第一象限,C,D在第四象限.
(1)求拋物線E的方程;
(2)是否存在直線l,使2|BC|是|AB|與|CD|的等差中項?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案