16.已知某中學(xué)高三文科班學(xué)生的數(shù)學(xué)與地理的水平測(cè)試成績(jī)抽樣統(tǒng)計(jì)如表:
人數(shù) x
y
ABC
A144010
Ba36b
C28834
若抽取學(xué)生n人,成績(jī)分為A(優(yōu)秀),B(良好),C(及格)三個(gè)等次,設(shè)x,y分別表示數(shù)學(xué)成績(jī)與地理成績(jī),例如:表中地理成績(jī)?yōu)锳等級(jí)的共有14+40+10=64(人),數(shù)學(xué)成績(jī)?yōu)锽等級(jí)且地理成績(jī)?yōu)镃等級(jí)的有8人.已知x與y均為A等級(jí)的概率是0.07.
(Ⅰ)設(shè)在該樣本中,數(shù)學(xué)成績(jī)的優(yōu)秀率是30%,求a,b的值;
(Ⅱ)已知a≥7,b≥6,求數(shù)學(xué)成績(jī)?yōu)锳等級(jí)的人數(shù)比C等級(jí)的人數(shù)多的概率.

分析 (1)由x與y均為A等級(jí)的概率是0.07,列出方程求出n,由此能求出a,b的值.
(2)a+b=30且a≥7,b≥6由14+a+28>10+b+34得a>b+2,由此利用列舉法能求出數(shù)學(xué)成績(jī)?yōu)锳等級(jí)的人數(shù)比C等級(jí)的人數(shù)多的概率.

解答 解:(1)∵x與y均為A等級(jí)的概率是0.07,
∴$\frac{14}{n}=0.07$,解得n=200,
∴$\frac{14+a+28}{200}=0.3$,故a=18
而a+b=30所以b=12.
(2)a+b=30且a≥7,b≥6由14+a+28>10+b+34得a>b+2
則(a,b)的所有可能結(jié)果為:(7,23),(8,22),(9,21)…(24,6)共有18種,
a>b+2可能結(jié)果為(17,13),(18,12)…(24,6)共有8種,
則所求$P=\frac{8}{18}=\frac{4}{9}$.

點(diǎn)評(píng) 本題考查概率的求法,涉及到古典概型、列舉法等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查集合思想、化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)-$\frac{1}{2}$cos(ωx-$\frac{7π}{6}$)(ω>0),滿足f(-$\frac{π}{6}$)=$\frac{3}{4}$,則滿足題意的ω的最小值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$與拋物線y2=2px(p>0)相交于A,B兩點(diǎn),直線AB恰好經(jīng)過(guò)它們的公共焦點(diǎn)F,則雙曲線的離心率為1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.關(guān)于函數(shù)y=tan(2x+$\frac{2π}{3}$),下列說(shuō)法正確的是( 。
A.是奇函數(shù)B.在區(qū)間$(\frac{π}{12},\frac{7π}{12})$上單調(diào)遞增
C.$(-\frac{π}{12},0)$為其圖象的一個(gè)對(duì)稱中心D.最小正周期為π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+acosx$,g(x)是f(x)的導(dǎo)函數(shù).
(1)若f(x)在$(\frac{π}{2},f(\frac{π}{2}))$處的切線方程為$y=\frac{π+2}{2}x-\frac{{{π^2}+4π}}{8}$,求a的值;
(2)若a≥0且f(x)在x=0時(shí)取得最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.小王同學(xué)有三支款式相同、顏色不同的圓珠筆,每支圓珠筆都有一個(gè)與之同顏色的筆帽,平時(shí)小王都將筆和筆帽套在一起,但偶爾會(huì)將筆和筆帽搭配成不同色.將筆和筆帽隨機(jī)套在一起,請(qǐng)問(wèn)小王將兩支筆和筆帽的顏色混搭的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知向量$\overrightarrow a$=(1,m),$\vec b$=(m,m-3),若$\overrightarrow a⊥\vec b$,則m=0或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知直線l與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)交于A、B兩點(diǎn),M為線段AB的中點(diǎn),延長(zhǎng)OM交橢圓C于P.
(1)若直線l與直線OM的斜率之積為-$\frac{1}{4}$,且橢圓的長(zhǎng)軸為4,求橢圓C的方程;
(2)若四邊形OAPB為平行四邊形,求四邊形OAPB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是單元素集合,若存在a<0,b<0使點(diǎn)P∈{(x,y)|(x-a)2+(y-b)2≤1},則點(diǎn)P所在的區(qū)域的面積為2π.

查看答案和解析>>

同步練習(xí)冊(cè)答案