【題目】某部門經(jīng)統(tǒng)計(jì),客戶對不同款型理財(cái)產(chǎn)品的最滿意程度百分比和對應(yīng)的理財(cái)總銷售量(萬元)如下表(最滿意度百分比超高時(shí)總銷售量最高):
產(chǎn)品款型 | A | B | C | D | E | F | G | H | I | J |
最滿意度% | 20 | 34 | 25 | 19 | 26 | 20 | 19 | 24 | 19 | 13 |
總銷量(萬元) | 80 | 89 | 89 | 78 | 75 | 71 | 65 | 62 | 60 | 52 |
設(shè)表示理財(cái)產(chǎn)品最滿意度的百分比,為該理財(cái)產(chǎn)品的總銷售量(萬元).這些數(shù)據(jù)的散點(diǎn)圖如圖所示.
(1)在份款型理財(cái)產(chǎn)品的顧客滿意度調(diào)查資料中任取份;只有一份最滿意的,求含有最滿意客戶資料事件的概率.
(2)我們約定:相關(guān)系數(shù)的絕對值在以下是無線性相關(guān),在以上(含)至是一般線性相關(guān),在以上(含)是較強(qiáng)線性相關(guān),若沒有達(dá)到較強(qiáng)線性相關(guān)則采取“末位”剔除制度(即總銷售量最少的那一款產(chǎn)品退出理財(cái)銷售);試求在剔除“末位”款型后的線性回歸方程(系數(shù)精確到).
數(shù)據(jù)參考計(jì)算值:
項(xiàng)目 |
|
|
|
| ||
值 | 21.9 | 72.1 | 288.9 | 37.16 | 452.1 | 17.00 |
附:回歸直線方程的斜率和截距的最小二乘法估計(jì)分別為:
線性相關(guān)系數(shù) .
【答案】(1);(2).
【解析】
(1)由最滿意度表可知在份款型產(chǎn)品客戶資料有最滿意客戶資料份,利用列舉法和古典概型概率計(jì)算公式,計(jì)算出含有最滿意客戶資料事件的概率.(2)根據(jù)線性相關(guān)系數(shù)公式計(jì)算出,故即與具有一般線性關(guān)系,沒有達(dá)到較強(qiáng)的線性相關(guān). 末位剔除數(shù)據(jù)后,利用剩下數(shù)據(jù),根據(jù)回歸直線方程計(jì)算公式,計(jì)算出回歸直線方程.
由最滿意度表可知在份款型產(chǎn)品客戶資料有最滿意客戶資料份;把最滿意客戶資料記為;其余客戶資料記為.
則任取二份資料的基本事件有: 共件.
含有的基本事件有:共件.
則含有最滿意客戶資料事件的概率為,得
故在這款型客戶資料中任取位客戶資料含有最滿意客戶資料事件的概率為.
(2)
即與具有一般線性關(guān)系,沒有達(dá)到較強(qiáng)的線性相關(guān)
由末位剔除制度可知,應(yīng)剔除款型
重新計(jì)算得,
所求線性回歸方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩直線方程與,點(diǎn)在上運(yùn)動,點(diǎn)在上運(yùn)動,且線段的長為定值.
(Ⅰ)求線段的中點(diǎn)的軌跡方程;
(Ⅱ)設(shè)直線與點(diǎn)的軌跡相交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若,求原點(diǎn)的直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,為中點(diǎn),側(cè)棱,底面為直角梯形,其中,,平面,、分別是線段、上的動點(diǎn),且.
(1)求證:平面;
(2)當(dāng)三棱錐的體積取最大值時(shí),求到平面的距離;
(3)在(2)的條件下求與平面所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形的邊長為2,,分別為,的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,平面平面.
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示多面體,其底面為矩形且,四邊形為平行四邊形,點(diǎn)在底面內(nèi)的投影恰好是的中點(diǎn).
(1)已知為線段的中點(diǎn),證明:平面;
(2)若二面角大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)說法,其中正確的是( )
A.命題“若,則”的否命題是“若,則”
B.“”是“雙曲線的離心率大于”的充要條件
C.命題“,”的否定是“,”
D.命題“在中,若,則是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解某產(chǎn)品的獲利情況,將今年1至7月份的銷售收入(單位:萬元)與純利潤(單位:萬元)的數(shù)據(jù)進(jìn)行整理后,得到如下表格:
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售收入 | 13 | 13.5 | 13.8 | 14 | 14.2 | 14.5 | 15 |
純利潤 | 3.2 | 3.8 | 4 | 4.2 | 4.5 | 5 | 5.5 |
該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤關(guān)于銷售收入的線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2月至6月的數(shù)據(jù).
(1)求純利潤關(guān)于銷售收入的線性回歸方程(精確到0.01);
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差均不超過0.1萬元,則認(rèn)為得到的線性回歸方程是理想的.試問該公司所得線性回歸方程是否理想?
參考公式:,,,;參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com