9.已知Z1=3+5i,Z2=3-5i,則Z1+Z2=(  )
A.6B.10iC.6iD.-10i

分析 直接把Z1=3+5i,Z2=3-5i代入Z1+Z2計(jì)算得答案.

解答 解:Z1=3+5i,Z2=3-5i,
則Z1+Z2=3+5i+3-5i=6.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線y2=px(p>0)與直線y=-x-1相切.
(1)求拋物線標(biāo)準(zhǔn)方程,及其準(zhǔn)線方程;
(2)若P、Q是拋物線上相異的兩點(diǎn),且P、Q的中點(diǎn)在直線x=1上,試證:線段PQ的垂直平分線恒過定點(diǎn)T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=$\frac{|{x}^{2}-1|}{x-1}$的圖象與函數(shù)y=kx-1的圖象有且只有一個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是{k|k≥1或k<-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知△ABC,若點(diǎn)M及實(shí)數(shù)λ滿足:$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=$\overrightarrow{0}$且$\overrightarrow{AB}$+$\overrightarrow{AC}$=λ$\overrightarrow{AM}$,則λ的值為(  )
A.-2B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),且f(x+2)=f(x),若f(x)在[-1,0]上是減函數(shù),記a=f(log0.52),b=f(log24),c=f(20.5),則( 。
A.a>b>cB.b>c>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=-2x2+3x(0<x≤2)的值域是(  )
A.$[{-2,\frac{9}{8}}]$B.$({-∞,\frac{9}{8}}]$C.$({0,\frac{9}{8}}]$D.$[{\frac{9}{8},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知θ∈(0,π),則y=$\frac{1}{{{{sin}^2}θ}}+\frac{9}{{{{cos}^2}θ}}$的最小值為( 。
A.6B.10C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(Ⅰ)對(duì)矩陣A=$({\begin{array}{l}3&1\\ 4&2\end{array}})$,求其逆矩陣A-1
(Ⅱ) 利用矩陣知識(shí)解二元一次方程組$\left\{\begin{array}{l}3x+y=2\\ 4x+2y=3\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C1的極坐標(biāo)方程是ρ+4cosθ+$\frac{5}{2ρ}$=0.以極點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系xOy中,曲線C2:x2+$\frac{{y}^{2}}{9}$=1
(Ⅰ)寫出C1的直角坐標(biāo)方程和C2的參數(shù)方程;
(Ⅱ)設(shè)M,N分別為C1,C2的任意一點(diǎn),求|MN|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案