【題目】如圖,在三棱錐ABCD中,點EBD上,EAEBECEDBDCD,△ACD為正三角形,點MN分別在AE,CD上運動(不含端點),且AMCN,則當四面體CEMN的體積取得最大值時,三棱錐ABCD的外接球的表面積為_____.

【答案】32π

【解析】

設(shè)EDa,根據(jù)勾股定理的逆定理可以通過計算可以證明出CEED. AMx,根據(jù)三棱錐的體積公式,運用基本不等式,可以求出AM的長度,最后根據(jù)球的表面積公式進行求解即可.

設(shè)EDa,則CDa.可得CE2+DE2CD2,∴CEED.

當平面ABD⊥平面BCD時,當四面體CEMN的體積才有可能取得最大值,設(shè)AMx.

則四面體CEMN的體積axa×xaxax,當且僅當x時取等號.

解得a2.

此時三棱錐ABCD的外接球的表面積=4πa232π.

故答案為:32π

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,ABCD為菱形,平面ABCD,連接ACBD交于點O,,E是棱PC上的動點,連接DE.

1)求證:平面平面;

2)當面積的最小值是4時,求此時點E到底面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體的棱長為1P是空間中任意一點,下列正確命題的個數(shù)是(

①若P為棱中點,則異面直線APCD所成角的正切值為

②若P在線段上運動,則的最小值為;

③若P在半圓弧CD上運動,當三棱錐的體積最大時,三棱錐外接球的表面積為;

④若過點P的平面與正方體每條棱所成角相等,則截此正方體所得截面面積的最大值為

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了政府對過熱的房地產(chǎn)市場進行調(diào)控決策,統(tǒng)計部門對城市人和農(nóng)村人進行了買房的心理預(yù)期調(diào)研,用簡單隨機抽樣的方法抽取110人進行統(tǒng)計,得到如下列聯(lián)表:

買房

不買房

糾結(jié)

城市人

5

15

農(nóng)村人

20

10

已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.

分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);

用獨立性檢驗的思想方法說明在這三種買房的心理預(yù)期中哪一種與城鄉(xiāng)有關(guān)?

參考公式:

k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為為常數(shù))對于任意的恒成立.

1)若,求的值;

2)證明:數(shù)列是等差數(shù)列;

3)若,關(guān)于的不等式有且僅有兩個不同的整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知點,的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)求的普通方程和的直角坐標方程;

2)設(shè)曲線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點分別在軸,軸上運動,,點在線段上,且.

1)求點的軌跡的方程;

2)直線交于,兩點,,若直線,的斜率之和為2,直線是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩同學在復(fù)習數(shù)列時發(fā)現(xiàn)原來曾經(jīng)做過的一道數(shù)列問題因紙張被破壞,導(dǎo)致一個條件看不清,具體如下:等比數(shù)列的前n項和為,已知_____

1)判斷,的關(guān)系;

2)若,設(shè),記的前n項和為,證明:.

甲同學記得缺少的條件是首項a1的值,乙同學記得缺少的條件是公比q的值,并且他倆都記得第(1)問的答案是,成等差數(shù)列.如果甲、乙兩同學記得的答案是正確的,請你通過推理把條件補充完整并解答此題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,均是等腰直角三角形,,、分別為、的中點.

)求證:平面;

)求證:

)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案