【題目】已知直四棱柱的棱長均相等,且BAD=60,M是側(cè)棱DD1的中點(diǎn),N是棱C1D1上的點(diǎn).
(1)求異面直線BD1和AM所成角的余弦值;
(2)若二面角的大小為,,試確定點(diǎn)N的位置.
【答案】(1);(2)點(diǎn)與點(diǎn)重合.
【解析】
(1)取的中點(diǎn),連結(jié),,由直棱柱的幾何特征及平面幾何的知識可得兩兩垂直,建立空間直角坐標(biāo)系,求出、后,利用即可得解;
(2)設(shè),求出平面的一個(gè)法向量,平面的一個(gè)法向量為,利用列方程即可得解.
的中點(diǎn),連結(jié),,
因?yàn)橹彼睦庵?/span>的棱長均相等,所以底面是菱形,
又,所以△ABD是正三角形,
所以,因?yàn)?/span>,所以,
在直四棱柱中,平面,平面,
所以,,
分別以直線為軸建立如圖所示的空間直角坐標(biāo)系,
設(shè)直四棱柱的棱長均為2,
則,,,,,,
(1)所以,,
設(shè)異面直線與所成角的大小為,則
,
所以異面直線與所成角的余弦值為;
(2)因?yàn)?/span>,.
設(shè)平面的一個(gè)法向量為,
則 即,所以
取,則;
設(shè),則,
設(shè)平面的一個(gè)法向量為,
則 即 ,所以
取,則,
則,解得,
所以當(dāng)二面角的大小為時(shí),點(diǎn)與點(diǎn)重合.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的導(dǎo)數(shù)的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),,求實(shí)數(shù)的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的零點(diǎn)構(gòu)成一個(gè)公差為的等差數(shù)列,把函數(shù)的圖象沿軸向右平移個(gè)單位,得到函數(shù)的圖象.關(guān)于函數(shù),下列說法正確的是( )
A. 在上是增函數(shù)B. 其圖象關(guān)于直線對稱
C. 函數(shù)是偶函數(shù)D. 在區(qū)間上的值域?yàn)?/span>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵、網(wǎng)購、移動(dòng)支付和共享單車被譽(yù)為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動(dòng)支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計(jì) | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移動(dòng)支付超過3次的用戶稱為“移動(dòng)支付活躍用戶”,能否在犯錯(cuò)誤概率不超過0.005的前提下,認(rèn)為是否為“移動(dòng)支付活躍用戶”與性別有關(guān)?
(Ⅱ)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“移動(dòng)支付達(dá)人”,視頻率為概率,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取4名用戶.
①求抽取的4名用戶中,既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率;
②為了鼓勵(lì)男性用戶使用移動(dòng)支付,對抽出的男“移動(dòng)支付達(dá)人”每人獎(jiǎng)勵(lì)300元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù),曲線上的點(diǎn)的極坐標(biāo)分別為.
(1)過O作線段的垂線,垂足為H,求點(diǎn)H的軌跡的直角坐標(biāo)方程;
(2)求兩點(diǎn)間的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·石家莊一模)祖暅?zhǔn)悄媳背瘯r(shí)期的偉大數(shù)學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖去一個(gè)圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿足祖暅原理的兩個(gè)幾何體為( )
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北極冰融是近年來最引人注目的氣候變化現(xiàn)象之一白色冰面融化變成顏色相對較暗的海冰,被稱為“北極變暗”現(xiàn)象,21世紀(jì)以來,北極的氣溫變化是全球平均水平的2倍,被稱為“北極放大”現(xiàn)象.如圖為北極年平均海冰面積()與年平均濃度圖.則下列說法正確的是( )
A.北極年海冰面積逐年減少
B.北極年海冰面積減少速度不斷加快
C.北極年海冰面積與年平均二氧化碳濃度大體成負(fù)相關(guān)
D.北極年海冰面積與年平均二氧化碳濃度大體成正相關(guān)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com