11.在等比數(shù)列{an}中,公比q=2,前87項(xiàng)的和S87=140,則a3+a6+a9+…+a87=( 。
A.20B.56C.80D.136

分析 由S87=140=$\frac{{a}_{1}({2}^{87}-1)}{2-1}$,可得a1(287-1)=140.再利用等比數(shù)列的求和公式即可得出.

解答 解:由S87=140=$\frac{{a}_{1}({2}^{87}-1)}{2-1}$,可得a1=$\frac{140}{{2}^{87}-1}$,即a1(287-1)=140.
∴a3+a6+a9+…+a87=$\frac{{a}_{1}×{2}^{2}[({2}^{3})^{29}-1]}{{2}^{3}-1}$=$\frac{4}{7}×$a1(287-1)=$\frac{4}{7}×$140=80.
故選:C.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在直角△ABC中,$A=\frac{π}{2},|AB|=1,|AC|=2,M$是△ABC內(nèi)的一點(diǎn),且$|AM|=\frac{1}{2}$,若$\overrightarrow{AM}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則λ+2μ的最大值為$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合M={1,9,a},集合P={1,a2},若P⊆M,則實(shí)數(shù)a的取值個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,其中$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow$=(cosx,1),x∈R.
(1)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,f(A)=-1,a=$\sqrt{7}$且向量$\overrightarrow{m}$=(3,sinB)與$\overrightarrow{n}$=(2,sinC)共線,求邊長b和c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|1<x<2},B={x|ax-2<0},若A?B,求滿足條件的實(shí)數(shù)a組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$a={log_{0.3}}2,b=sin\frac{π}{18},c={(0.5)^{-2}}$,則( 。
A.a<b<cB.b<c<aC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知tanθ=2,則2sin2θ+sinθcosθ=( 。
A.$-\frac{3}{4}$B.$\frac{5}{6}$C.2D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在等差數(shù)列{an}中,若a2+a4+a9=12,則a3+a7=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.(ax-1)lgx>0恒成立,則a的值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案