分析 (1)利用$\overrightarrow{u}$⊥$\overrightarrow{v}$時$\overrightarrow{u}$•$\overrightarrow{v}$=0,列出等式,再利用正弦定理和同角的三角函數(shù)關系,求出B的值;
(2)根據(jù)余弦定理,結合題意列出方程組,即可求出a、c的值.
解答 解:(1)$\overrightarrow{u}$=(b,-$\sqrt{3}$a),$\overrightarrow{v}$=(sinA,cosB),且$\overrightarrow{u}$⊥$\overrightarrow{v}$,
∴$\overrightarrow{u}$•$\overrightarrow{v}$=bsinA-$\sqrt{3}$acosB=0,
即bsinA=$\sqrt{3}$acosB;
由正弦定理得sinBsinA=$\sqrt{3}$sinAcosB;
又A∈(0,π),∴sinA≠0,
∴sinB=$\sqrt{3}$cosB,
∴tanB=$\sqrt{3}$;
又B∈(0,π),∴B=$\frac{π}{3}$;
(2)由B=$\frac{π}{3}$,且b=3,c=2a,
根據(jù)余弦定理得b2=a2+c2-2accosB,
即32=a2+4a2-2a•2a•cos$\frac{π}{3}$,
解得a=$\sqrt{3}$或a=-$\sqrt{3}$(不合題意,舍去);
∴a=$\sqrt{3}$,c=2a=2$\sqrt{3}$.
點評 本題考查了正弦、余弦定理的應用問題,也考查了平面向量的數(shù)量積與同角三角函數(shù)關系的應用問題,是綜合題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“?x≥2,均有x2-3x+2≥0”的否定是:“?x<2,使得x2-3x+2<0” | |
B. | 命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1” | |
C. | 采用系統(tǒng)抽樣法從某班按學號抽取5名同學參加活動,學號為5、16、27、38、49的同學均被選出,則該班人數(shù)可能為60 | |
D. | 在某項測量中,測量結果X服從正態(tài)分布N(1,σ2)(σ>0),若X在(0,1)內取值的概率為0.3,則X在(0,2)內取值的概率為0.6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com