【題目】如圖,三棱柱中,側(cè)面為菱形,的中點為O,且平面.
(1)證明:;
(2)若,,,求到平面ABC的距離.
【答案】(1)證明見解析;(2).
【解析】
(1)先根據(jù),可證明平面ABO,再根據(jù)直線與平面垂直的性質(zhì)可證;
(2)先作出點到平面的距離: 作,垂足為D,連接AD,作,垂足為H,則就是點到平面的距離,然后根據(jù)已知條件計算出,再根據(jù)為的中點可得到平面ABC的距離.
(1)證明:連接,則O為與的交點,
∵側(cè)面為菱形,∴,
∵平面,∴,
∵,∴平面ABO,
∵平面ABO,∴.
(2)作,垂足為D,連接AD,作,垂足為H,
∵,,,
∴平面AOD,
∴,
∵,,
∴平面ABC.
∵,∴為等邊三角形,
∵,∴,
∵,∴,
∴,由,∴,
∵O為的中點,
∴到平面ABC的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a為常數(shù))與x軸有唯一的公共點A.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)曲線在點A處的切線斜率為,若存在不相等的正實數(shù),,滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD是正方形,PA⊥平面ABCD,E,F分別是線段AD,PB的中點,PA=AB=1.
(1)證明:EF∥平面PDC;
(2)求點F到平面PDC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集(,)具有性質(zhì):對任意的、(),與兩數(shù)中至少有一個屬于.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說明理由;
(2)證明:,且;
(3)證明:當時,、、、、成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:, 過點的直線:與橢圓交于M、N兩點(M點在N點的上方),與軸交于點E.
(1)當且時,求點M、N的坐標;
(2)當時,設(shè),,求證:為定值,并求出該值;
(3)當時,點D和點F關(guān)于坐標原點對稱,若△MNF的內(nèi)切圓面積等于,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線的參數(shù)方程為(,為參數(shù)),曲線上的點對應(yīng)的參數(shù).在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.射線與曲線交于點.
(1)求曲線的直角坐標方程;
(2)若點,在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四棱錐S﹣AFCD中,平面SCD⊥平面AFCD,∠DAF=∠ADC=90°,AD=1,AF=2DC=4,,B,E分別為AF,SA的中點.
(1)求證:平面BDE∥平面SCF
(2)求二面角A﹣SC﹣B的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右焦點分別為,,左頂點為,點在橢圓上,且的面積為.
(1)求橢圓的方程;
(2)過原點且與軸不重合的直線交橢圓于,兩點,直線分別與軸交于點,,.求證:以為直徑的圓恒過交點,,并求出面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com