7.如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)N,M分別是BD,B1C的點(diǎn).
(1)若點(diǎn)N,M分別是BD,B1C的中點(diǎn),求證:MN∥AA1B1B;
(2)若$\frac{{B}_{1}M}{MC}$=$\frac{BN}{ND}$=$\frac{1}{2}$,則上述結(jié)論還成立嗎?若成立請給出證明.

分析 (1)連接AC,AB1,利用三角形的中位線定理證明MN∥AB1,即可證明MN∥平面ABB1A1;
(2)結(jié)論仍成立,過點(diǎn)M作MP∥B1B,交BC于點(diǎn)P,連接NP,證明平面MNP∥平面ABB1A1,即可證明MN∥平面ABB1A1..

解答 證明:(1)如圖1,
連接AC,AB1,
∵ABCD是正方形,N是BD中點(diǎn),
∴N是AC中點(diǎn),
又∵M(jìn)是CB1中點(diǎn),
∴MN∥AB1,
∵M(jìn)N?平面ABB1A1,AB1?平面ABB1A1,
∴MN∥平面ABB1A1
(2)結(jié)論仍成立,證明如下;
如圖2,

過點(diǎn)M作MP∥B1B,交BC于點(diǎn)P,連接NP,
∵M(jìn)P∥B1B,∴$\frac{{B}_{1}M}{MC}$=$\frac{BP}{PC}$,
又$\frac{{B}_{1}M}{MC}$=$\frac{BN}{ND}$=$\frac{1}{2}$,∴$\frac{BN}{ND}$=$\frac{BP}{PC}$,∴NP∥DC,
又AB∥CD,∴NP∥AB;
由MP∥B1B,MP?平面ABB1A1,B1B?平面ABB1A1,∴MP∥平面ABB1A1,
同理,NP∥平面ABB1A1
又MP?平面MNP,MP?平面MNP,
∴平面MNP∥平面ABB1A1,
又MN?平面MNP,
∴MN∥平面ABB1A1

點(diǎn)評 本題考查了線線平行、線面平行和面面平行的判定與性質(zhì)定理的應(yīng)用問題,是中檔題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.g(x)=2lnx-x2-mx,x∈R,如果g(x)的圖象與x軸交于A(x1,0),B(x2,0)(x1<x2),AB中點(diǎn)為C(x0,0),求證g′(x0)≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某職業(yè)中學(xué)外貿(mào)專業(yè)高二(1)班有學(xué)生7人,高二(2)班有學(xué)生9人,高二(3)班有學(xué)生10人參加技能興趣選拔賽.
(1)如果選一人當(dāng)組長,那么有多少種選法?
(2)如果老師任組長,每班選一名副組長,那么有多少種不同的選法?
(3)如果推選兩名學(xué)生參加市技能大賽,要求這兩人來自不同的班級,那么有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.一個(gè)等比數(shù)列的前4項(xiàng)之和為前2項(xiàng)之和的2倍,則這個(gè)數(shù)列的公比是(  )
A.$\frac{1}{2}$或-$\frac{1}{2}$B.1C.1或-1D.2或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知平面向量$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow$=(x,y)(x>0),且|$\overrightarrow$|=1.
(1)若對任意的實(shí)數(shù)t都有|t$\overrightarrow{a}$-$\overrightarrow$|≥1,求向量$\overrightarrow$.
(2)在條件(1)下,令$\overrightarrow{m}$=$\overrightarrow{a}$+(sin2α-2cosα)$\overrightarrow$,$\overrightarrow{n}$=($\frac{1}{4}$sin22α)$\overrightarrow{a}$+(cosα)$\overrightarrow$,α是銳角,若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.0<P(B)<1,且P((A1+A2)|B)=P(A1|B)+P(A2|B),則下列選項(xiàng)中,成立的是( 。
A.P((A1+A2)|$\overline{B}$)=P(A1|$\overline{B}$)+P(A2|$\overline{B}$)B.P(A1B+A2B)=P(A1B)+P(A2B)
C.P(A1+A2)=P(A1|B)+P(A2|B)D.P(B)=P(A1)P(B|A1)+P(A2)P(B|A2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,在正方體ABCD-A1B1C1D1中,E、F分別為BC、BB1的中點(diǎn),則下列直線中與直線EF相交的是(  )
A.直線AA1B.直線A1B1C.直線A1D1D.直線B1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知實(shí)數(shù)a、b滿足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x-b|≥2$\sqrt{ab}$.
(2)若a+b=1,求證:$\frac{1}{a}$+$\frac{1}$+$\frac{2}{ab}$≥12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.與⊙D:(x+1)2+(y-2)2=$\frac{1}{2}$相切且在兩坐標(biāo)軸上的截距相等的直線的條數(shù)有(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案