A. | 64π | B. | 65π | C. | 66π | D. | 128π |
分析 求出△ABC外接圓的半徑,利用勾股定理求出球的半徑,即可求出球O的表面積.
解答 解:由于PB=PC,取BC的中點(diǎn)為O',則PO'⊥BC,
由于平面ABC⊥平面PBC,
即有PO'⊥平面ABC,
∵PA=8,BC=4,PB=PC=AB=AC,
∴PB=6,PO'=4$\sqrt{2}$,
△ABC中,AB=AC=6,BC=4,
∴sin∠ABC=$\frac{4\sqrt{2}}{6}$=$\frac{2\sqrt{2}}{3}$,
∴2r=$\frac{6}{\frac{2\sqrt{2}}{3}}$,
設(shè)球的半徑為R,球心到平面ABC的距離為h,
則($\frac{9}{2\sqrt{2}}$)2+h2=(4$\sqrt{2}$-h)2+(4$\sqrt{2}$-$\frac{9}{2\sqrt{2}}$)2=R2,
解得R=$\frac{\sqrt{65}}{2}$.
球O的表面積為4πR2=65π,
故選:B.
點(diǎn)評(píng) 本題考查面面垂直的性質(zhì)定理和球的截面的性質(zhì)的運(yùn)用,熟記這些定理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{2}$+$\frac{1}{3}$ | C. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | D. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com