16.已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點(diǎn)(-2,1).

分析 直線l:kx-y+1+2k=0(k∈R),化為:k(x+2)+(1-y)=0,令$\left\{\begin{array}{l}{x+2=0}\\{1-y=0}\end{array}\right.$,解出即可得出.

解答 解:直線l:kx-y+1+2k=0(k∈R),化為:k(x+2)+(1-y)=0,
令$\left\{\begin{array}{l}{x+2=0}\\{1-y=0}\end{array}\right.$,解得x=-2,y=1.
則該直線過定點(diǎn)(-2,1).
故答案為:(-2,1).

點(diǎn)評 本題考查了直線系的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3=3,a6=9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={-1,-2,0,5},則下列關(guān)系成立的是( 。
A.-1⊆AB.{-2,0}∈AC.5∈AD.0⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.由y=2cos2x的圖象向右平移a個(gè)單位長度可以得到函數(shù)f(x)=2sin(3x+$\frac{π}{3}$)的圖象,則a的最小值為(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)定義在R上的函數(shù)f(x)滿足f(x)•f(x+2)=13,若f(1)=2,則f(2015)=( 。
A.$\frac{13}{3}$B.$\frac{13}{2}$C.13D.$\frac{39}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知二次函數(shù)f(x)=x2-2$\sqrt{a}$x+b.
(1)若系數(shù)a,b都可隨機(jī)取集合{0,1,2}中任何一數(shù)字,求方程f(x)=0有實(shí)根的概率;
(2)若系數(shù)a,b都可隨機(jī)取區(qū)間[0,3]中任何一實(shí)數(shù),求方程f(x)=0有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,若lg(a+c)+lg(a-c)=lgb+lg(b+c),則A=( 。
A.90°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(文)求函數(shù)f(x)=x3-2x+4的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在直角坐標(biāo)系中,若不等式組$\left\{\begin{array}{l}{y≥0}\\{y≤x}\\{y≤k(x-1)-1}\end{array}\right.$表示一個(gè)三角形區(qū)域,則實(shí)數(shù)k的取值范圍是( 。
A.(-∞,-1)B.(-1,2)C.(-∞,-1)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案