5.(文)求函數(shù)f(x)=x3-2x+4的導(dǎo)數(shù).

分析 根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo)即可.

解答 解:f′(x)=3x2-2

點評 本題考查了導(dǎo)數(shù)的運算法則,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某商場經(jīng)營的一種袋裝的大米的質(zhì)量服從正態(tài)分布N(10,0.12)(單位kg).任選一袋這種大米,其質(zhì)量在9.8~10.2kg的概率為( 。
(附:若隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.7%.)
A.0.0456B.0.6826C.0.9544D.0.997

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知x∈R,a=x2-1,b=2x+2,若用反證法證明結(jié)論“a,b中至少有一個不小于0”時,首先應(yīng)假設(shè)( 。
A.a≥0且b≥0B.a≤0且b≤0C.a<0且b<0D.a<0或b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,所有棱長都相等的直四棱柱ABCD-A′B′C′D′中,B′D′中點為E′
(Ⅰ)證明:AE′∥平面BC′D;
(Ⅱ)求證:BD⊥AE′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2sinx(sinx+cosx).
(I)求f(x)的最小正周期及對稱中心坐標(biāo);
(II)求f(x)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若${({2x+\frac{{\sqrt{a}}}{x}})^4}$的展開式中常數(shù)項為96,則實數(shù)a等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,直三棱柱ABC-A1B1C1的底面為等邊三角形,側(cè)面AA1C1C是正方形,E是A1B的中點,F(xiàn)是棱CC1上的點.
(1)若F是CC1的中點,求證:AE⊥平面A1FB;
(2)當(dāng)VB-AEF=9$\sqrt{3}$時,求正方形AA1C1C的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)$f(x)=\left\{\begin{array}{l}(2-a)x+1,x<1\\{a^x},x≥1\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么a的取值范圍是( 。
A.(1,2)B.(1,$\frac{3}{2}$]C.[$\frac{3}{2}$,2)D.($\frac{3}{2}$,2)

查看答案和解析>>

同步練習(xí)冊答案