17.若${({2x+\frac{{\sqrt{a}}}{x}})^4}$的展開式中常數(shù)項(xiàng)為96,則實(shí)數(shù)a等于4.

分析 利用通項(xiàng)公式即可得出.

解答 解:通項(xiàng)公式Tr+1=${∁}_{4}^{r}$(2x)4-r$(\frac{\sqrt{a}}{x})^{r}$=24-r${a}^{\frac{r}{2}}$$•{∁}_{4}^{r}$x4-2r,
令4-2r=0,解得r=2.
∴22•a1•${∁}_{4}^{2}$=96,解得a=4.
故答案為:4.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合A={-1,-2,0,5},則下列關(guān)系成立的是( 。
A.-1⊆AB.{-2,0}∈AC.5∈AD.0⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若lg(a+c)+lg(a-c)=lgb+lg(b+c),則A=( 。
A.90°B.60°C.150°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(文)求函數(shù)f(x)=x3-2x+4的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1+lnx}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為-3,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.由曲線y=$\sqrt{2x}$,直線y=x-4及y軸所圍成的封閉圖形的面積為( 。
A.$\frac{40}{3}$B.$\frac{64}{3}$C.16$\sqrt{2}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x|$\frac{x-3}{x-2}$>0},B={x||x-1|≤2},則A∩B=(  )
A.(-∞,-1)∪[2,3)B.[-1,2)C.(-∞,-1)∪[2,3)∪(3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在直角坐標(biāo)系中,若不等式組$\left\{\begin{array}{l}{y≥0}\\{y≤x}\\{y≤k(x-1)-1}\end{array}\right.$表示一個(gè)三角形區(qū)域,則實(shí)數(shù)k的取值范圍是( 。
A.(-∞,-1)B.(-1,2)C.(-∞,-1)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.四棱錐S-ABCD的底面ABCD是正方形,各側(cè)棱長(zhǎng)與底面的邊長(zhǎng)均相等,M為SA的中點(diǎn),則直線BM與SC所成的角的余弦值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案