分析 (I)利用二倍角公式以及兩角和與差的三角函數(shù)化簡函數(shù)的解析式,然后求解f(x)的最小正周期,利用正弦函數(shù)的對稱中心求解函數(shù)的對稱中心坐標;
(II)利用正弦函數(shù)的單調(diào)增區(qū)間求解函數(shù)的單調(diào)增區(qū)間即可.
解答 (本題滿分12分)
解:(I)f(x)=2sinx(sinx+cosx)=2sin2x+2sinxcosx=$sin2x-cos2x+1=\sqrt{2}sin(2x-\frac{π}{4})+1$,…(2分)
則f(x)的最小正周期T=π,…(3分)
由$\left\{\begin{array}{l}sin(2x-\frac{π}{4})=0\\ y=1\end{array}\right.$,得$\left\{\begin{array}{l}2x-\frac{π}{4}=kπ\(zhòng)\ y=1\end{array}\right.$(k∈Z),
即$\left\{\begin{array}{l}x=\frac{kπ}{2}+\frac{π}{8}\\ y=1\end{array}\right.$(k∈Z),f(x)的對稱中心坐標為$(\frac{kπ}{2}+\frac{π}{8},1)$(k∈Z);…(7分)
(Ⅱ)由$\frac{π}{2}+2kπ≤2x-\frac{π}{4}≤\frac{3π}{2}+2kπ$,
得$\frac{3π}{8}+kπ≤x≤\frac{7π}{8}+kπ$(k∈Z),f(x)的遞減區(qū)間為$[\frac{3π}{8}+kπ,\frac{7π}{8}+kπ]$(k∈Z).…(12分)
點評 本題考查兩角和與差的三角函數(shù),正弦函數(shù)的對稱性以及對稱中心周期是求法,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③ | B. | ①② | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{40}{3}$ | B. | $\frac{64}{3}$ | C. | 16$\sqrt{2}$ | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com