精英家教網 > 高中數學 > 題目詳情

【題目】已知圓A:(x+22+y232,過B2,0)且與圓A相切的動圓圓心為P

1)求點P的軌跡E的方程;

2)設過點A的直線l1交曲線EQ、S兩點,過點B的直線l2交曲線ER、T兩點,且l1l2,垂足為WQS、RT為不同的四個點),求四邊形QRST的面積的最小值.

【答案】1;(2

【解析】

1)設動圓半徑為r,由于點B在圓A內,所以圓P與圓A內切,計算可得|PA|+|PB|4|AB|4,可得點P符合橢圓的定義,可得其軌跡的方程;

2)若l1l2的斜率不存在,四邊形QRST的面積為8,若兩條直線的斜率都存在,設直線l1的斜率為k,則直線l1的方程為ykx+2),聯(lián)立直線與橢圓,設點Qx1,y1),點Sx2,y2),可得 ,可得|QS|的值,同理可得|RT|,由SQRST|QS||RT|,利用基本不等式可得其最小值.

解:(1)設動圓半徑為r,由于點B在圓A內,所以圓P與圓A內切,

|PA|4r|PB|r,

|PA|+|PB|4|AB|4,

∴點P的軌跡是以A,B為焦點的橢圓,其中a2,c2,

b2a2c24,

∴點P的軌跡E的方程為:

2)若l1l2的斜率不存在,四邊形QRST的面積為8,

若兩條直線的斜率都存在,設直線l1的斜率為k,則直線l1的方程為ykx+2),

聯(lián)立方程,得(1+2k2x2+8k2x+8k280

設點Qx1,y1),點Sx2,y2),

,

|QS|4

同理可得|RT|4,

SQRST|QS||RT|,當且僅當2k2+1k2+2,即k±1時等號成立,

綜上所述,當k±1時,四邊形QRST的面積取到最小值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】成書于公元一世紀的我國經典數學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,題目是:“今有池方一丈,點生其中央,出水一尺,引葭趕岸,適馬岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈(10尺),有棵蘆葦長在它的正中央,高出水面部分有1尺長,把蘆葦拉向岸邊,恰好碰到沿岸(池塘一邊的中點),則水深為__________尺,蘆葦長__________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓C)的上頂點為,離心率為.

1)求橢圓C的方程;

2)若過點A作圓(圓在橢圓C內)的兩條切線分別與橢圓C相交于B,D兩點(BD不同于點A),當r變化時,試問直線BD是否過某個定點?若是,求出該定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某土特產超市為預估2020年元旦期間游客購買土特產的情況,對2019年元旦期間的90位游客購買情況進行統(tǒng)計,得到如下人數分布表.

購買金額(元)

人數

10

15

20

15

20

10

1)根據以上數據完成列聯(lián)表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.

不少于60

少于60

合計

40

18

合計

2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計劃購買80元的土特產,請列出實際付款數(元)的分布列并求其數學期望.

附:參考公式和數據:,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班A、B兩名學生六次數學測驗成績(百分制)如圖所示:

A同學成績的中位數大于B同學成績的中位數;

A同學的平均分比B同學高;

A同學的平均分比B同學低;

A同學成績方差小于B同學的方差,

以上說法中正確的是(

A.③④B.①②④C.②④D.①③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某土特產超市為預估2020年元旦期間游客購買土特產的情況,對2019年元旦期間的90位游客購買情況進行統(tǒng)計,得到如下人數分布表.

購買金額(元)

人數

10

15

20

15

20

10

1)根據以上數據完成列聯(lián)表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.

不少于60

少于60

合計

40

18

合計

2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計劃購買80元的土特產,請列出實際付款數(元)的分布列并求其數學期望.

附:參考公式和數據:,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.

若該省從121日至224日的新冠肺炎每日新增確診人數按日期順序排列構成數列,的前n項和為,則下列說法中正確的是(

A.數列是遞增數列B.數列是遞增數列

C.數列的最大項是D.數列的最大項是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日,在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“!弊帧①N春聯(lián)、掛燈籠等方式來表達對新年的美好祝愿,某商家在春節(jié)前開展商品促銷活動,顧客凡購物金額滿50元,則可以從“!弊、春聯(lián)和燈籠這三類禮品中任意免費領取一件,若有4名顧客都領取一件禮品,則他們中有且僅有2人領取的禮品種類相同的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中,為自然對數的底數.

1)求函數的最小值;

2)若對于任意的,都存在唯一的,使得,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案