4.已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,且所有棱長都相等.平面A1BC1∩平面ABC=l,則直線l與AB1所成角的余弦值為$\frac{\sqrt{2}}{4}$.

分析 如圖所示,直線l與AB1所成角即為∠B1AC.利用余弦定理,可得結(jié)論.

解答 解:如圖所示,直線l與AB1所成角即為∠B1AC.
設(shè)三棱柱的棱長為a,B1A=B1C=$\sqrt{2}$a,AC=a,
∴cos∠B1AC=$\frac{2{a}^{2}+{a}^{2}-2{a}^{2}}{2•\sqrt{2}a•a}$=$\frac{\sqrt{2}}{4}$,
∴直線l與AB1所成角的余弦值為$\frac{\sqrt{2}}{4}$.
故答案為:$\frac{\sqrt{2}}{4}$.

點評 本題考查直線l與AB1所成角,考查余弦定理,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若($\sqrt{x}$-$\frac{1}{x}$)n的二項展開式中各項的二項式系數(shù)的和是64,則展開式中的常數(shù)項為( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)是偶函數(shù),且在(0,+∞)上是減函數(shù),證明:函數(shù)f(x)在(-∞,0)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知F1為圓(x+1)2+y2=16的圓心,N為圓F1上一動點,且F2(1,0),點M,P分別是線段F1N,F(xiàn)2N上的點,滿足$\overrightarrow{MP}$•$\overrightarrow{{F}_{2}N}$=0,$\overrightarrow{{F}_{2}N}$=2$\overrightarrow{{F}_{2}P}$.
(Ⅰ)求動點M的軌跡E的方程;
(Ⅱ)過點F2的直線l(與x軸不重合)與軌跡E交于A,C兩點,線段AC的中點為G,連接OG并延長交軌跡E于B點(O為坐標(biāo)原點),求四邊形OABC的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.我國古代的勞動人民曾創(chuàng)造了燦爛的中華文明,戍邊的官兵通過在烽火臺上舉火向國內(nèi)報告,烽火臺上點火表示數(shù)字1,不點火表示數(shù)字0,這蘊(yùn)含了進(jìn)位制的思想.下面程序框圖的算法思路就源于我國古代戍邊官兵的“烽火傳信”.執(zhí)行該程序框圖,若輸入a=1234,k=5,n=4則輸出的b=( 。
A.26B.194C.569D.819

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,過右焦點F且垂直于x軸的直線與橢圓E交于M,N兩點,且|MN|=3.
(Ⅰ)求橢圓E的方程;
(Ⅱ)A,B,C為橢圓E上不同的三點,O為坐標(biāo)原點,若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,試問:△ABC的面積是否為定值?若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=sin(x+φ)在x=$\frac{π}{4}$時取得最小值,則函數(shù)y=f($\frac{3π}{4}$-x)的一個單調(diào)遞增區(qū)間是(  )
A.(-$\frac{π}{2}$,-$\frac{π}{4}$)B.(0,$\frac{π}{2}$)C.($\frac{π}{2}$,π)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某幾何體的三視圖如圖所示,且該幾何體的體積是$\sqrt{3}$cm3,則正視圖中的x值是2cm,該幾何體的表面積是$\frac{{5\sqrt{3}+3\sqrt{7}+4}}{2}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)F為拋物線x2=-4y的焦點,該拋物線在點P(-4,-4)處的切線與x軸的交點為Q,則三角形PFQ的外接圓方程為(x+2)2+(y+$\frac{5}{2}$)2=$\frac{25}{4}$.

查看答案和解析>>

同步練習(xí)冊答案