16.若函數(shù)f(x)=sin(x+φ)在x=$\frac{π}{4}$時(shí)取得最小值,則函數(shù)y=f($\frac{3π}{4}$-x)的一個(gè)單調(diào)遞增區(qū)間是(  )
A.(-$\frac{π}{2}$,-$\frac{π}{4}$)B.(0,$\frac{π}{2}$)C.($\frac{π}{2}$,π)D.($\frac{3π}{2}$,2π)

分析 由題意和三角函數(shù)的最小值可得φ值,可得函數(shù)y=f($\frac{3π}{4}$-x)的解析式,由復(fù)合函數(shù)和正弦函數(shù)的單調(diào)性可得.

解答 解:∵當(dāng)x=$\frac{π}{4}$時(shí),函數(shù)f(x)=sin(x+φ)取得最小值,
∴$\frac{π}{4}$+φ=2kπ-$\frac{π}{2}$,解得φ=2kπ-$\frac{3π}{4}$,k∈Z,
不妨取k=0,則φ=-$\frac{3π}{4}$,即f(x)=sin(x-$\frac{3π}{4}$)
∴y=f($\frac{3π}{4}$-x)=sin[($\frac{3π}{4}$-x)-$\frac{3π}{4}$]=-sinx,
∴函數(shù)的一個(gè)單調(diào)遞增區(qū)間為($\frac{π}{2}$,π).
故選:C.

點(diǎn)評(píng) 本題考查正弦函數(shù)的單調(diào)性,涉及復(fù)合函數(shù)的單調(diào)性,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖在邊長(zhǎng)為2的菱形ABCD中,∠ABC=60°,PC⊥平面ABCD,PC=2,E為PA的中點(diǎn).(1)求證:平面EBD⊥平面ABCD; 
(2)求點(diǎn)E到平面PBC的距離;
(3)求二面角A-EB-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=|x-1|+|x-3|.
(1)解關(guān)于x的不等式f(x)≤4;
(2)若f(x)>m2+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,且所有棱長(zhǎng)都相等.平面A1BC1∩平面ABC=l,則直線l與AB1所成角的余弦值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)i是虛數(shù)單位,復(fù)數(shù)z=(1-2i)(i+4),則|z|=( 。
A.$\sqrt{65}$B.5$\sqrt{3}$C.$\sqrt{85}$D.$\sqrt{95}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,a3+a9=24,S5=30.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{1}{{{a_n}•{a_{n+2}}}}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.底面邊長(zhǎng)為2m,高為$\sqrt{3}$m的正四棱錐的全面積為12m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在正方體ABCD-A1B1C1D1中,P為正方形A1B1C1D1四邊上的動(dòng)點(diǎn),O為底面正方形ABCD的中心,M,N分別為AB,BC的中點(diǎn),點(diǎn)Q為平面ABCD內(nèi)一點(diǎn),線段D1Q與OP互相平分,則滿足$\overrightarrow{MQ}$=λ$\overrightarrow{MN}$的實(shí)數(shù)λ有2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線ax+y+3a-1=0恒過定點(diǎn)M,則直線2x+3y-6=0關(guān)于M點(diǎn)對(duì)稱的直線方程為(  )
A.2x+3y-12=0B.2x+3y+12=0C.2x-3y+12=0D.2x-3y-12=0

查看答案和解析>>

同步練習(xí)冊(cè)答案