8.底面邊長為2m,高為$\sqrt{3}$m的正四棱錐的全面積為12m2

分析 先分析出其全面積包括四個側(cè)面一個底面,分別求出其面積,再求和即可.

解答 解:如圖
因?yàn)檎睦忮F的全面積包括四個全等的側(cè)面積,一個底面積.
而一個側(cè)面積為:$\frac{1}{2}$×BC•VE=$\frac{1}{2}$×2×2=2m2,
∴S=4×2+2×2=12m2
故答案為12.

點(diǎn)評 本題考查棱柱、棱錐、棱臺的體積,棱錐的結(jié)構(gòu)特征,還考查計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{a}$,$\overrightarrow$均為單位向量,它們的夾角為120°,那么|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.我國古代的勞動人民曾創(chuàng)造了燦爛的中華文明,戍邊的官兵通過在烽火臺上舉火向國內(nèi)報告,烽火臺上點(diǎn)火表示數(shù)字1,不點(diǎn)火表示數(shù)字0,這蘊(yùn)含了進(jìn)位制的思想.下面程序框圖的算法思路就源于我國古代戍邊官兵的“烽火傳信”.執(zhí)行該程序框圖,若輸入a=1234,k=5,n=4則輸出的b=( 。
A.26B.194C.569D.819

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=sin(x+φ)在x=$\frac{π}{4}$時取得最小值,則函數(shù)y=f($\frac{3π}{4}$-x)的一個單調(diào)遞增區(qū)間是(  )
A.(-$\frac{π}{2}$,-$\frac{π}{4}$)B.(0,$\frac{π}{2}$)C.($\frac{π}{2}$,π)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)如果執(zhí)行下面的程序框圖,那么輸出的S=( 。
A.6B.120C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某幾何體的三視圖如圖所示,且該幾何體的體積是$\sqrt{3}$cm3,則正視圖中的x值是2cm,該幾何體的表面積是$\frac{{5\sqrt{3}+3\sqrt{7}+4}}{2}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知曲線f(x)=x3+x2+x+3在x=-1處的切線與拋物線y=2px2相切,則拋物線的準(zhǔn)線方程為( 。
A.$x=\frac{1}{16}$B.x=1C.y=-1D.y=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=x5+ax3+bx-8且f(-2)=3,那么f(2)等于-19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,曲線C1和C2的參數(shù)方程分別是$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t是參數(shù))和$\left\{\begin{array}{l}{x=cosφ}\\{y=1+sinφ}\end{array}\right.$(φ為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系.
(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;
(Ⅱ)射線OM:θ=α(α∈[$\frac{π}{6}$,$\frac{π}{4}$])與曲線C1的交點(diǎn)為O,P,與曲線C2的交點(diǎn)為O,Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

同步練習(xí)冊答案