10.已知函數(shù) f(x)滿足f(x+1)=x2-$\frac{1}{3}$f(3).
(1)求f(x)解析式;
(2)當(dāng)x∈(-2,-$\frac{1}{2}$)時(shí),不等式f(a)+4a<(a+2)f(x2)恒成立,求a的取值范圍.

分析 (1)求出f(3),通過(guò)換元求出函數(shù)的解析式即可;(2)通過(guò)討論a的范圍,結(jié)合二次函數(shù)的性質(zhì)確定a的范圍即可.

解答 解:(1)令x=2,得$f(3)=4-\frac{1}{3}f(3)$,∴f(3)=3,
令x+1=t,則x=t-1,∴f(t)=(t-1)2-1=t2-2t,
∴f(x)=x2-2x.
(2)由(1)知f(a)=a2-2a,即為a2+2a<(a+2)f(x2).
當(dāng)a+2=0時(shí),a2+2a<(a+2)f(x2),即為a<0,不合題意.
當(dāng)a+2>0時(shí),a2+2a<(a+2)f(x2)可轉(zhuǎn)化為a<f(x2)=(x2-1)2-1.
∵$x∈(-2,-\frac{1}{2})$,∴${x^2}∈(\frac{1}{4},4)$,
∵f(x2)=(x2-1)2-1,∴當(dāng)x2=1即x=-1時(shí),f(x2)取得最小值-1.
∴a<-1,∵a+2>0,∴-2<a<-1.
當(dāng)a+2<0時(shí),a2+2a<(a+2)f(x2)可轉(zhuǎn)化為a>f(x2).
∵當(dāng)$x∈(-2,-\frac{1}{2})$時(shí),f(x2)<8,∴a≥8,又a<-2,∴不合題意.
綜上,a的取值范圍為(-2,-1).

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查分類(lèi)討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知如表為“五點(diǎn)法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中A>0,ω>0,|φ|<π).
x$-\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
f(x)020-20
(Ⅰ) 請(qǐng)寫(xiě)出函數(shù)f(x)的解析式,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ) 求函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知sinα=2sinβ,tanα=3tanβ,則cos2α=$-\frac{1}{4}$或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知角β的終邊在直線y=-x上.
(1)寫(xiě)出角β的集合S;
(2)寫(xiě)出S中適合不等式-360°<β<360°的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.等差數(shù)列{an}中,已知a7=-8,a17=-28.
(1)求數(shù)列{an}的通項(xiàng)公式;  
(2)求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心C在直線l上;若動(dòng)點(diǎn)M滿足:|MA|=2|MO|,且M的軌跡與圓C有公共點(diǎn).求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}和{bn}滿足a1=2,b1=1,an+1=2an(n∈N*),b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{_{n}}$=bn+1-1(n∈N*).
(Ⅰ)求an與bn
(Ⅱ)記數(shù)列{anbn}的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列說(shuō)法正確的是( 。
A.“若a>1,則a2>1”的否命題是“若a>1,則a2≤1”
B.在△ABC中,“A>B”是“sinA>sinB”必要不充分條件
C.“若tanα≠$\sqrt{3}$,則α≠$\frac{π}{3}$”是真命題
D.?x0∈(-∞,0)使得3x0<4x0成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=|2x+1|+|3x-2|,且不等式f(x)≤5的解集為$\{x|-\frac{4a}{5}≤x≤\frac{3a}{5}\},a,b∈R$.
(1)求a,b的值;
(2)對(duì)任意實(shí)數(shù)x,都有|x-a|+|x+b|≥m2-3m成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案