18.用反證法證明命題“若a2+b2≠0,則a,b不全為0(a,b∈R)”時,其假設正確的是( 。
A.a,b中至少有一個為0B.a,b中至少有一個不為0
C.a,b全為0D.a,b中只有一個不為0

分析 用反證法證明數(shù)學命題時,應先假設要證的命題的否定成立,求出要證命題的否定,即可得到答案.

解答 解:用反證法證明數(shù)學命題時,應先假設要證的命題的否定成立,
而命題“若a2+b2≠0,則a,b不全為0(a,b∈R)”的否定為“a,b全為0”,
故選C.

點評 本題主要考查用反證法證明數(shù)學命題的方法和步驟,求一個命題的否定,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.四棱錐P-ABCD的底面ABCD是邊長為6的正方形,且PA=PB=PC=PD,若一個半徑為1的球與此四棱錐所有面都相切,則該四棱錐的高是$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列敘述中,正確的個數(shù)是(  )
①命題P:“?x∈R,x2-2≥0”的否定形式為¬P:“?x∈R,x2-2<0”
②雙曲線上任意一點到左右焦點的距離的差等于雙曲線的實軸長
③“m>n”是“${(\frac{2}{3})^m}>{(\frac{2}{3})^n}$的充分不必要條件;
④命題“若x2-3x-4=0,則x=4”的逆否命題為“x≠4,則x2-3x-4≠0”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.對于函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,sinx≤cosx}\\{cosx,sinx>cosx}\end{array}\right.$給出下列四個命題:
①該函數(shù)是以π為最小正周期的周期函數(shù);
②當且僅當x=π+2kπ(k∈Z)時,該函數(shù)取得最小值-1;
③該函數(shù)的圖象關于x=$\frac{5π}{4}$+2kπ(k∈Z)對稱;
④當且僅當2kπ<x<$\frac{π}{2}$+2kπ(k∈Z)時,0<f(x)≤$\frac{\sqrt{2}}{2}$
其中正確命題的序號是③④.(請將所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.給出以下命題:
①雙曲線$\frac{{y}^{2}}{2}$-x2=1的漸近線方程為y=±$\sqrt{2}$x;
②函數(shù)f(x)=lgx-$\frac{1}{x}$的零點所在的區(qū)間是(1,10);
③已知線性回歸方程為$\stackrel{∧}{y}$=3+2x,當變量x增加2個單位,其預報值平均增加4個單位;
④已知隨機變量X服從正態(tài)分布N(0,1),且P(-1≤X≤1)=m,則P(X<-1)=1-m
則正確命題的序號為①②③.(寫出所有正確題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知:向量$\vec a\;,\;\vec b\;,\;\vec c\;,\;\vec d$及實數(shù)x,y滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{c}$=$\overrightarrow{a}$+(x2-3)$\overrightarrow$,$\overrightarrow0wmccgi$=(-y)$\overrightarrow{a}$+x$\overrightarrow$.若$\vec a⊥\vec b$,$\vec c⊥\vec d$且|$\overrightarrow{c}$|≤$\sqrt{10}$
(1)求y=f(x)的函數(shù)解析式和定義域
(2)若當$x∈({1\;,\;\sqrt{6}})$時,不等式$\frac{f(x)}{x}$≥mx-7恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知$|{\overrightarrow a}|=|{\overrightarrow b}|=1$,且$|{\overrightarrow a+k\overrightarrow b}|=\sqrt{3}|{k\overrightarrow a-\overrightarrow b}|(k>0)$,令$f(k)=\overrightarrow a•\overrightarrow b$.
(1)求$f(k)=\overrightarrow a•\overrightarrow b$(用k表示);
(2)當k>0時,$f(k)≥{x^2}-2tx-\frac{5}{2}$對任意的t∈[-2,2]恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知橢圓mx2+ny2=1(n>m>0)的離心率為$\frac{{\sqrt{2}}}{2}$,則雙曲線mx2-ny2=1的離心率為( 。
A.2B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.以(a,1)為圓心,且與兩直線x-y+1=0及x-y-3=0同時相切的圓的標準方程為( 。
A.x2+(y-1)2=2B.(x-2)2+(y-1)2=2C.x2+(y-1)2=8D.(x-2)2+(y-1)2=8

查看答案和解析>>

同步練習冊答案