12.若函數(shù)f(x)滿足f(2x-1)=x+1,則f(3)等于(  )
A.3B.4C.5D.6

分析 由函數(shù)f(x)滿足f(2x-1)=x+1,利用f(3)=f(2×2-1),能求出結(jié)果.

解答 解:∵函數(shù)f(x)滿足f(2x-1)=x+1,
∴f(3)=f(2×2-1)=2+1=3.
故選:A.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=-3\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù))和圓x2+y2=16交于A,B兩點,則AB的中點坐標(biāo)為( 。
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.(-$\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(2x-3)4=a0+a1x+a2x2+a3x3+a4x4,求
(1)a1+a2+a3+a4
(2)(a0+a2+a42-(a1+a32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|x-a|+|x-3a|.
(1)若f(x)的最小值為2,求a的值;
(2)若對?x∈R,?a∈[-1,1],使得不等式m2-|m|-f(x)<0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.從5個不同的小球中選4個放入3個箱子中,要求第一個箱子放入1個小球,第二個箱子放入2個小球,第三個箱子放入1個小球,則不同的放法共有( 。
A.120種B.96種C.60種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在多面體ABCDE中,ABCD是矩形,平面ABCD⊥平面CDE,CD⊥DE,2DE=2DC=BC,F(xiàn)是棱BC的中點.
(1)證明:AF⊥EF;
(2)已知CD=1,求點B到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.8($\sqrt{3}$+1)+πB.8($\sqrt{3}$+1)+2πC.8($\sqrt{3}$+1)一πD.8($\sqrt{3}$+l)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x-3y+5≥0\\ 2x+y-4≤0\\ y+2≥0\end{array}\right.$則z=x+y的最小值為-13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.有下列四個說法:
①命題“$?{x_0}∈R,{x_0}^2-{x_0}>0$”的否定是“?x∈R,x2-x≤0”;
②已知命題p∧q為假,則p,q都假;
③命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”;
④“x=-1”是“x2-5x-6=0”的必要不充分條件;
其中正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案