5.函數(shù)$f(x)={log_{\frac{1}{2}}}({x^2}+2x-15)$的單調(diào)遞增區(qū)間是(  )
A.(-1,+∞)B.(3,+∞)C.(-∞,-1)D.(-∞,-5)

分析 由真數(shù)大于0求出原函數(shù)的定義域,然后求出內(nèi)函數(shù)的減區(qū)間得答案.

解答 解:由x2+2x-15>0,得x<-5或x>3.
∴函數(shù)$f(x)={log_{\frac{1}{2}}}({x^2}+2x-15)$的定義域?yàn)椋?∞,-5)∪(3,+∞).
令t=x2+2x-15,則外層函數(shù)為y=$lo{g}_{\frac{1}{2}}t$,是減函數(shù),
又內(nèi)層函數(shù)t=x2+2x-15的減區(qū)間為(-∞,-5),
∴函數(shù)$f(x)={log_{\frac{1}{2}}}({x^2}+2x-15)$的單調(diào)遞增區(qū)間是(-∞,-5).
故選:D.

點(diǎn)評 本題主要考查了復(fù)合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對應(yīng)復(fù)合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進(jìn)行判斷,判斷的依據(jù)是“同增異減”,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面 CDB1;
(2)求三棱錐的體積${V_{B-{B_1}CD}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.動點(diǎn)P從邊長為1的正方形ABCD的頂點(diǎn)A出發(fā)順次經(jīng)過B,C,D再回到A,設(shè)x表示P點(diǎn)的行程,f(x)表示PA的長,g(x)表示△ABP的面積.
(1)求f(x)的表達(dá)式;
(2)求g(x)的表達(dá)式并作出g(x)的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.過拋物線y2=2px(p>0)的焦點(diǎn)的直線交拋物線A、B兩點(diǎn),且|AB|=4,這樣的直線可以作2條,則p的取值范圍是( 。
A.(0,4)B.(0,4]C.(0,2]D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓$\frac{x^2}{4}$+$\frac{y^2}{2}$=1,F(xiàn)1,F(xiàn)2為其左.右焦點(diǎn),直線l與橢圓相交于A、B兩點(diǎn),
(1)線段AB的中點(diǎn)為(1,$\frac{1}{2}$),求直線l的方程;
(2)直線l過點(diǎn)F1,三角形ABF2內(nèi)切圓面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)集合$\{\frac{3}{a}+b|1≤a≤b≤2\}$中的最大元素與最小元素分別為M,m,則M-m的值為5-2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在某項(xiàng)娛樂活動的海選過程中評分人員需對同批次的選手進(jìn)行考核并評分,并將其得分作為該選手的成績,成績大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰成績在(40,60)內(nèi)的選手可以參加復(fù)活賽,如果通過,也可以參加第二輪比賽.
(Ⅰ)已知成績合格的200名參賽選手成績的頻率分布直方圖如圖,估計(jì)這200名參賽選手成績的平均數(shù)和中位數(shù);
(Ⅱ)現(xiàn)有6名選手的海選成績分別為(單位:分)43,45,52,53,58,59,經(jīng)過復(fù)活賽后,有二名選手進(jìn)入到第二輪比賽,求這2名選手的海選成績均在(50,60)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已橢圓方程為$\frac{x^2}{25}+\frac{y^2}{16}=1$,則該橢圓的焦距為( 。
A.10B.8C.6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,則f(3)=7.

查看答案和解析>>

同步練習(xí)冊答案