18.已知等差數(shù)列{an}的公差d≠0,且a1,a3,a13成等比數(shù)列,若a2+a3=8,則數(shù)列{an}的前n項(xiàng)和Sn=n2

分析 利用等差數(shù)列通項(xiàng)公式和等比數(shù)列性質(zhì)列出方程組,求出a1=1,d=2,由此能求出數(shù)列{an}的前n項(xiàng)和Sn

解答 解:∵等差數(shù)列{an}的公差d≠0,
且a1,a3,a13成等比數(shù)列,a2+a3=8,
∴$\left\{\begin{array}{l}{({a}_{1}+2d)^{2}={a}_{1}({a}_{1}+12d)}\\{{a}_{1}+d+{a}_{1}+2d=8}\end{array}\right.$,
解得a1=1,d=2,
∴數(shù)列{an}的前n項(xiàng)和Sn=$n+\frac{n(n-1)}{2}×2={n}^{2}$.
故答案為:n2

點(diǎn)評(píng) 本題考查等差數(shù)列的前n項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.
(3)探討函數(shù)F(x)=lnx-$\frac{1}{{e}^{x}}$+$\frac{2}{ex}$是否存在零點(diǎn)?若存在,求出函數(shù)F(x)的零點(diǎn),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,拋物線y2=4x的一條弦AB經(jīng)過(guò)焦點(diǎn)F,取線段OB的中點(diǎn)D,延長(zhǎng)OA至點(diǎn)C,使|OA|=|AC|,過(guò)點(diǎn)C,D作y軸的垂線,垂足分別為E,G,則|EG|的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知圓E:${x^2}+{({y-\frac{1}{2}})^2}=\frac{9}{4}$經(jīng)過(guò)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦點(diǎn)F1,F(xiàn)2,與橢圓C在第一象限的交點(diǎn)為A,且F1,E,A三點(diǎn)共線.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)與直線OA(O為原點(diǎn))平行的直線l交橢圓C于M,N兩點(diǎn).當(dāng)△AMN的面積取到最大值時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.“sinα=$\frac{1}{2}$“是“α=30°”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在直角坐標(biāo)系xOy中,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,且橢圓C1經(jīng)過(guò)點(diǎn)A(1,$\frac{3}{2}$),同時(shí)F2也是拋物線C2:y2=4x的焦點(diǎn).
(Ⅰ)求橢圓C1的方程;
(Ⅱ)E,F(xiàn)是橢圓C1上兩個(gè)動(dòng)點(diǎn),如果直線AE與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2cos2x,將函數(shù)y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的一個(gè)對(duì)稱中心是( 。
A.(-$\frac{π}{2}$,1)B.(-$\frac{π}{12}$,1)C.($\frac{π}{6}$,1)D.($\frac{π}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.執(zhí)行如圖所示程序框圖,若使輸出的結(jié)果不大于100,則輸入的整數(shù)k的最大值為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù)),將曲線C1上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$,縱坐標(biāo)縮短為原來(lái)的$\frac{\sqrt{3}}{3}$,得到曲線C2,在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為4ρsin(θ+$\frac{π}{3}$)+$\sqrt{3}$=0.
(1)求曲線C2的極坐標(biāo)方程及直線l與曲線C2交點(diǎn)的極坐標(biāo);
(2)設(shè)點(diǎn)P為曲線C1上的任意一點(diǎn),求點(diǎn)P到直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案